Dominant and recessive alleles

e If a single copy of an allele results in the same phenotype as two copies

irrespective of the second allele, the allele is said to be dominant over the

second allele

¢ Likewise, an allele which must occur in both copies of the gene to yield the

phenotype is termed recessive

¢ Alleles which correspond to mutations which destroy the coding of a protein

tend to be recessive

o |f the phenotype for genotype i=j is intermediate between the phenotypes
for i=i and j=j, the alleles i and j are codominant

Genotype, phenotype, and penetrance

e Because human cells are diploid, there are two alleles at each locus .This

pair of alleles is called the individual's genotype at that locus

e The phenotype is the characteristic (e.g. eye colour) that results from
having a specific genotype

¢ Often we require probability models to describe phenotypic expression of

genotypes. Probabilities of phenotype conditional upon genotype are called

penetrances

¢ In many cases, the same phenotype can result from a variety of different
genotypes (called phenocopies)

¢ The same gene may also have several different phenotypic manifestations

(called plieotrophy)

C
@
. A A v
(a) (b)
BUC = ‘atleast one of Band C occur’
BnC = ‘’both Band C occur’
B* = ’Bdoes not occur,

General Addition Rule: P(BUUC)=P(B)+P(C)-P(BNC)

Allele & genotype frequencies and Heterozygosity
e If the 2 alleles at a locus are the same, the individual is said to be
homozygous at the locus.
o If they are different, he/she is said to be heterozygous

¢ The heterozygosity of a marker is a summary of the allele frequency
distribution at a locus in a population.

e Heterozygosity is defined as the probability that two alleles
chosen at random from the population are different.

If piis the (relative) frequency of the i-th allele,

heterozygosity =1- Y p/



Hardy-Weinberg Equilibrium

In contrast, going from allele frequencies to genotype frequencies
requires more assumptions.

Example 6 (Penetrances of a binary disease.) Suppose we have an inheritable mo-
nogenic disease, i.e. the susceptibility to the disease depends on the genetoype at one
certain locus. Suppose there are two possible alleles 4 and # at this locus. Usually
A denotes the disease susceptibility allele and @ the normal allele, respectively.

fo P('affected’| (aa)), .
£ P(affected'| (Aa)), (2.4) HWE Model Assumptions

£ = Plaffected’|(44)),

: . _ _ : . _ _ no migration in or out of population
disease has fi = o = 1, i.e. one disease allele is sufficient to cause the disease with

certainty. However, apart from some genetic traits that are manifest at birth, it is
usually the case that 0 < fo,fi,fo < 1. The disease is dominant if fj = f, and
recessive if fo = fi.

no mutation

@ infinite population
Two events B and C are independent if the occurrence of B does not affect the o discrete generations
conditional probability of C and vice versa. In formulas, this is written e random mating
P(BN C -
P(C) = P(C|B) = —([-J(B) L — psn o) = PBIPO). 2.5) ® no selection
o
o
o

equal initial genotype frequencies in the two sexes

Hardy-Weinberg Equilibrium: Part 1 and 2

Example 5 (Sibling relative risk.) Given a sib pair, let B and C denote the events Independence &

that the first and second sibling is affected by a disease respectively. Then

B Hardy-Weinberg Proportions

K =P(C

is defined as the sibling prevalence of the disease. Whereas the prevalence K, in (2.1)
was the probability that a randomly chosen individual was affected, K; is the proba-
bility of being affected given the extra information that the sibling is affected. For

Two events B and C are independent if the occurrence of B does not affect the
conditional probability of C and vice versa. In formulas, this is written

a disease with genetic component(s), we must obviously have K; > K,. The extent P(BN C)
. . . . . - . . ™ — P - - . D Y —= P e 3
to which the risk increases when the sibling is known to be affected, is quantified by P(C) = P(C|B) = P(B) = P(BN C) = P(B)P(C). (2.5)
means of the the relative risk for siblings,
A=K/K,. (2.3) . . .
' e Independence of more than two events can be defined analogously. If By, B,, . . .. B,
The more A, exceeds one, the larger is the genetic component of the disease. O are independent, it follows that

P(B,NB,N...\B)=P(B)-PBy)-...- PB,) = [[ PB.
=1



In the first generation: P(A) = u+ v and P(a) = w + 3v

Hardy-Weinberg Equilibrium

2nd Generation

1

Mating Type | Mating Frequency | Expected Progeny
AA x AA u? AA
AA x Aa 2uv %AA:%Aa
AA X aa 2uw Aa
Aa x Aa v2 TAA: 1 Aa: 1 aa
Aa X aa 2vw %Aa:%aa
aa x aa w? aa

« Check: 12 4+ 2uv +2uw + v + 2w + w2 = (u+v+w)? =1
@ For the second generation, we have the following genotype

frequencies:

o p=P(AA) = >+ 1(2uv) + v = (u+ %v)2

o g=P(Aa) =uv+2uw+ v+ w=2(u+3v) (3v+w)

o r=P(aa) = %vz + %(2vw) +w? = (W—I— %v)2

@ What are the genotype frequencies in the third generation?

Hardy-Weinberg Equilibrium: Part 1 and 2

Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

When a population is in Hardy-Weinberg equilibrium, the alleles
that comprise a genotype can be thought of as having been chosen
at random from the alleles in a population. We have the following
relationship between genotype frequencies and allele frequencies for
a population in Hardy-Weinberg equilibrium:

P(AA) = P(A)P(A)

P(Aa) = 2P(A)P(a)
P(aa) = P(a)P(a)

Hardy-Weinberg Equilibrium: Part 1 and 2

‘ Hardy-Weinberg Equilibrium

@ Consider a locus with two alleles: A and a

@ Assume in the first generation the alleles are not in HWE and

the genotype frequency distribution is as follows:

1st Generation

Genotype | Frequency

AA
Aa
aa

u
4
w

where u+v+w=1

@ From the genotype frequencies, we can easily obtain allele

frequencies:

1
P(A) = u-|—§v

1
P(a) = W—|—§v

Hardy-Weinberg Equilibrium: Part 1 and 2

The frequency of the AA genotype in the third generation is:
= (p30) = (o3 (3) 2o 1) (o))
(1)) el
~((v+ 1) [(u+v+W)]>2
= (0 2)0) = (w4 2)) =

Similarly, P(Aa) = q and P(aa) = r for generation 3
e Equilibrium is reached after one generation of random mating

under the Hardy-Weinberg assumptions! That is, the genotype
frequencies remain the same from generation to generation.

Hardy-Weinberg Equilibrium: Part 1 and 2




Testing Hardy-Weinberg Equilibrium

Example 10 (Heterozygosity of a marker.)

The heterozygosity H of a marker is defined as the
probability that two independently picked marker alleles are different. It is frequently
@ When a locus is not in HWE, then this suggests one or more used for quantifying the degree of polymorphism.

of the Hardy-Weinberg assumptions is false. We will apply the law of total probability

@ Departure from HWE has been used to infer the existence of (2.7), with B = ’the two alleles are of the same type’ and C; = ’allele 1 is of type 7.
natural selection, argue for existence of assortive Then, by the definition of allele frequency P(C,) = p;. Further, given that C; has
(non'random) mating, and infer genotyping errors. occurred, the event B is the same thing as allele 2 is of type 7. Therefore, since the

) ) o two alleles are picked independently,
@ It is therefore of interest to test whether a population is in

HWE at a locus.

@ We will discuss the two most popular ways of testing HWE:

P(B|C;) = P(allele 2 is of type 7’| C;) = P(allele 2 is of type ') = p;.

Finally, we get from (2.7);

e Chi-Square test H — PBY=1-PB) =1 b p(BICAP(C
o Exact test = I ); - (By=1->,_, P(BIC)P(C)
= 1= .0

The closer to 1 H is, the more polymorphic is the marker.

Hardy-Weinberg Equilibrium: Part 1 and 2

Hardy-Weinberg Equilibrium

Theorem 1 (Law of total probability.) Lez Cy,. .., C; be a disjoint decomposition of
the sample space'. Then, for any event B,

k
PB) =) PBIC)P(C). (2.7)
For example, consider a diallelic locus with alleles A and B with =l
frequencies 0.85 and 0.15, respectively. If the locus is in HWE,
then the genotype frequencies are: Example 8 (Prevalence under HW equilibrium.) What is the prevalence K, of a
monogenic disease for a population in Hardy-Weinberg equilibrium when the disease
P(AA) = 0.85 % 0.85 = 0.7225 allele frequency is p = 0.02 and the penetrance parameters are f; = 0.03, f; = 0.3
and f, = 0.9? We apply Theorem 1 with B = "aftected’, and C;, C; and C; the events
P(AB) = 0.85 % 0.15 + 0.15 % 0.85 = 0.2550 that a randomly picked individual has genotype (a2), (A2) and (AA) respectively

for M=pP+fi-2p(0=p)+f-p? (2.8)
0.03-(1 —=0.02)*4+0.3-2-0.02-(1 —0.02) +0.9-0.02° -
= 0.04009.

Hardy-Weinberg Equilibrium: Part 1 and 2



