Overview of the Structure Approach	<u>X, Z, & P</u>			
Data:X: genotypes of sampled individuals (known)Z: population origins of individuals (unknown)P: population allele frequencies (unknown)Mathematical Structure (unknown)Hardy-Weinberg Equilibrium (HWE) within populations Linkage Equilibrium (LE) between loci within populationsModel:Each allele [at each locus, in each genotype] is a random draw from a probability distribution, $Pr(X Z,P)$ Population structure is imposed on the data to account for any Disequilibrium (HWD and/or LD)Goal:Perform statistical inference on the parameters $Z \& P$ MethodiA Bayesian approach using MCMC to approximate samples from $Pr(Z,P X)$	$(x_{l}^{(i,1)}, x_{l}^{(i,2)}) = \text{Genotype of } i^{\text{th}} \text{ individual At } l^{\text{th}} \text{ locus}$ $z^{(i)} = \text{Pop. from which individual } i \text{ originated}$ $P_{kjj} = \text{freq. of allele } j \text{ at locus } l \text{ in population } k$ $i = 1, 2,, N \qquad l = 1, 2,, L$ $j = 1, 2,, J_{i} \qquad k = 1, 2,, K$			
We want $Pr(Z,P \mid X)$ and can calculate $Pr(X \mid Z,P)$ directly Bayes rule gives $Pr(Z,P \mid X) \propto Pr(Z) Pr(P) Pr(X \mid Z,P)$ where $Pr(Z)$ and $Pr(P)$ are called <i>priors</i>	 Step 0. Specify initial starting values Z⁽⁰⁾ for population origins (e.g., random assignment according to a uniform probability distribution) Step 1a. Sample P^(m) from Pr(P X, Z^(m-1)) Step 2a. Sample Z^(m) from Pr(Z X, P^(m)) 			
Pr(Z,P X) can't be computed exactly, but MCMC can give an approximate sample from the distribution $(Z^{(1)}, P^{(1)}), (Z^{(2)}, P^{(2)}),, (Z^{(M)}, P^{(M)})$ Summary statistics based on this sample (e.g., <i>posterior means</i>) give estimates of the parameters. e.g., $E(p_{klj} X) \approx \frac{1}{M} \sum_{m=1}^{M} p_{klj}^{(m)}$	 Step 1b: estimate allele freqs. for each population assuming population origins are known Step 2b: estimate population origins for each individual assuming population allele freqs. are known (Z^(m), P^(m)), (Z^(m+c), P^(m+c)), (Z^(m+2c), P^(m+2c)), are approximately independent draws from Pr(Z,P X) for sufficiently large <i>m</i> and <i>c</i> 			

Mutation Models for Microsatellites

X = size of an Msat allele in repeat units

Single-step Stepwise Mutation Model (SSMM)

 $\begin{array}{rrr} X & \rightarrow & (X+1) \text{ with probability } 0.5 \\ & & (X-1) \text{ with probability } 0.5 \end{array}$

Multi-step Stepwise Mutation Model (MSMM)

 $X \rightarrow X$ +/- 1 with probability pX +/- U with probability 1-p

Where U ~ Geometric(λ) [1/ λ = 1.5 is commonly used]

ANOVA $y_{gki} = p + a_g + b_{gk} + w_{gki}$

Source	SS	DF	MS		
Among Groups	SS(AG)	G-1	SS(AG)/(G-1)		
Among Pops Within Group	SS(AP)	K-G	SS(AP)/(K-G)		
Among individuals Within Population	SS(WP)	N-K	SS(WP)/(N-K)		
Total	SS(Tot)	N-1			
			$K = \sum_{g=1}^{G} k_g$	$N = \sum_{g=1}^{G} \sum_{k=1}^{k_g} n_{gk}$	
$SS(Tot) = \sum_{g=1}^{G} \sum_{k=1}^{k_g} \sum_{i=1}^{n_{gk}} (y_{gki} - \overline{y}_{})^2$					
$SS(WP) = \sum_{g=1}^{G} \sum_{k=1}^{k_g} \sum_{i=1}^{n_{gk}} (y_{gki} - \overline{y}_{gk.})^2$					

AMOVA uses the relationship below to compute the SS

$$SS(z) = \sum_{i=1}^{N} (z_i - \overline{z})^2 = \frac{1}{2N} \sum_{i=1}^{N} \sum_{j=1}^{N} (z_i - z_j)^2$$

Which allows you to specify a distance measure between different alleles.

→ $SS(WP) = \sum_{g=1}^{G} \sum_{k=1}^{k_g} \frac{1}{2n_{gk}} \sum_{i=1}^{n_{gk}} \sum_{j=1}^{n_{gk}} \delta_{(gk)ij}^2$

 $\delta^2_{(gk)ij} = (y_{gki} - y_{gkj})^2 \quad \text{is meaningful for Msats}$

Percentages of variance explained are ratios of variance components, e.g.,

$$\sigma_a^2 / \sigma_{Tot}^2$$
, $\sigma_b^2 / \sigma_{Tot}^2$, $\sigma_w^2 / \sigma_{Tot}^2$

<u>ANOVA</u> can be used separately for each allele (variant 1 vs. not variant 1), and then combined over alleles.

Let x_{kji} be the j^{th} allele in the i^{th} individual in the k^{th} population

and y_{kji} be an 0/1 indicator variable for the variant "A"

Then, $E(y_{kji}) = p$ and $Var(y_{kji}) = p(1-p)$

<u>AMOVA</u> extends to multiple loci (e.g., *m* different loci)

$$SS(WP) = \sum_{g=1}^{G} \sum_{k=1}^{k_g} \frac{1}{2n_{gk}} \sum_{i=1}^{n_{gk}} \sum_{j=1}^{n_{gk}} (y_{gki} - y_{gkj})' W(y_{gki} - y_{gkj})$$

where y is now an m-vector and W is a square matrix of weights that defines the relationships between loci and/or their weights.