
Analysis of case/control studies 

• Case/control studies are designed to consider observed genotype as the 

random variable, and compare its distribution between cases and controls 

 

• The analysis and interpretation is easier if we consider disease status (case 

vs. control) as a random outcome, predicted by genotype  

 

• These models lend themselves to analysis via logistic regression 

Linear Probability Model (LPM) 
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LPM Regression Line 

Points on the regression line are predicted 

probabilities of Y for each value of X 

LPM  problems 

 Predicted probabilities can be >1 or <0 

 

 The error terms vary based on the size of X 

 

 The errors are not normally distributed since Y takes on only two values 

 

 

Logistic Function 
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Points on the regression line are predicted 

probabilities of Y for each value of X 



Logistic Regression 

• Response:  Presence/Absence of a characteristic or disease 

• Predictor:   Numeric variable observed for each case 

• Model:       p(x) = Prob. of presence at predictor level x   [sometimes p(x)] 
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•  = 0     P(Presence) is the same at each level of x 

•  > 0     P(Presence) increases as x increases 

•  < 0     P(Presence) decreases as x increases 

Logistic Regression – Statistical Details 
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Model for  yi:  
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Allelic Odds Ratio - revisited 
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πA  represents the probability that an allele/chromosome drawn at random from the  

A alleles/chroms is from an individual with disease (a case subject) 

 

Logistic Regression & Allelic Odds Ratios 

• We can fit a logistic regression model predicting the origin (case or control) 

of an allele using x - an indicator variable for allele:  (0,1) = (A, a) 

 

• Testing Ho: β=0  is equivalent to testing if the OR=1 

 



Genotype Odds Ratios - revisited 
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Logistic Regression & Genotype Odds Ratios 

• For the Genotype OR, we need 2 indicator variables, x1 & x2, to represent 

the genotype categories (i.e., 2 d.f.).  

 

• The hypothesis of no association is tested with Ho: β1=β2=0 

Multiple Logistic Regression 

• Extension to more than one predictor variable (numeric or dummy 

variables). 

• With p predictors, the model is: 
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• Adjusted Odds ratio for raising xi by 1 unit, holding other predictors 

constant: 

ieORi
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• Inferences on i and ORi are conducted as in the case of a single 

predictor 

95% Confidence Interval for Odds Ratio 

• Construct a 95% CI for  : 
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• Exponentiate both endpoints of the CI for  : 

^ ^^ ^
1.96 1.96,SE SEe e      

 
 



� � � �

1

1

(1 )

1

( ) (1 )

exp ln ln(1 )

exp ln ln(1 )
1

i i

i i

n
y y

i

y y

n

i
i

L p p p

p p

py p
p

�

�

�

�

� �

� �� �� 	 �
 �� 

� �� �� �

� 	 �� �
 �� ��� �� �� 


�

�

ln
1 i
p x
p

�
� �

�� ��� �

1(1 )
1 exp( )i

p
x�

� �
	

Reparameterize the Likelihood function using: 
1-parameter (no-intercept) Model 
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1-parameter (no-intercept) Model 
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Solve for: 

Hessian Matrix = 

2-parameter Model (with Intercept) 

Log Likelihood: 
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In general, Newton-Raphson’s method can be expanded to k possible 
parameters. As a result, the Hessian matrix is always of dimension 
kxk and all other vectors are of dimension kx1.  
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