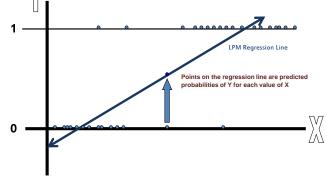
Analysis of case/control studies

- Case/control studies are designed to consider observed genotype as the random variable, and compare its distribution between cases and controls
- The analysis and interpretation is easier if we consider disease status (case vs. control) as a random outcome, predicted by genotype
- · These models lend themselves to analysis via logistic regression

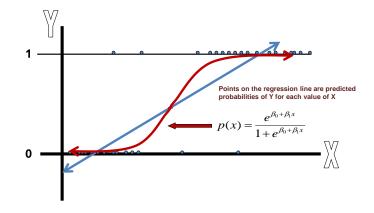
Ψ.

Linear Probability Model (LPM)



LPM problems

- Predicted probabilities can be >1 or <0
- The error terms vary based on the size of X
- The errors are not normally distributed since Y takes on only two values



Logistic Regression

• Response: Presence/Absence of a characteristic or disease

- Predictor: Numeric variable observed for each case
- Model: $\pi(x) =$ Prob. of presence at predictor level x [sometimes p(x)]

$$\pi(x_i) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

• $\beta = 0 \implies$ P(Presence) is the same at each level of x • $\beta > 0 \implies$ P(Presence) increases as x increases • $\beta < 0 \implies$ P(Presence) decreases as x increases

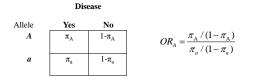
Logistic Regression – Statistical Details

$$p(x_i) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}} \quad \leftrightarrow \quad \ln\left(\frac{p(x_i)}{1 - p(x_i)}\right) = \beta_0 + \beta_1 x_i$$

Data: $Y_i \in (0,1)$ i = 1,...,n $p = P(Y_i = 1)$

Model for
$$y_i$$
: $f(y_i) = p^{y_i} (1-p)^{1-y_i}$ $i = 1,...,n$

Allelic Odds Ratio - revisited



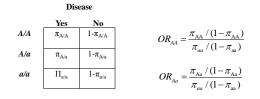
 π_A represents the probability that an allele/chromosome drawn at random from the A alleles/chroms is from an individual with disease (a case subject)

Logistic Regression & Allelic Odds Ratios

		Cas			
Allele	х	Probability	Odds	Log Odds	$= \alpha + \beta x$
а	0	π_a	$\pi_a/(1-\pi_a)$	$\log\left\{\pi_a/(1-\pi_a)\right\}$	α
Α	1	π_A	$\pi_A/(1-\pi_A)$	$\log\left\{\pi_A/(1-\pi_A)\right\}$	lpha+eta

- We can fit a logistic regression model predicting the origin (case or control) of an allele using *x* an indicator variable for allele: (0,1) = (A, a)
- Testing H_{a} : $\beta = 0$ is equivalent to testing if the OR = I

Genotype Odds Ratios - revisited



Logistic Regression & Genotype Odds Ratios

Subject is a case?					
Genotype	x_1	x_2	Probability	Odds	Log odds = $\alpha + \beta_1 x_1 + \beta_2 x_2$
a/a	0	0	$\pi_{a/a}$	$\pi_{a/a}/(1-\pi_{a/a})$	α
A/a	1	0	$\pi_{A/a}$	$\pi_{A/a}/(1-\pi_{A/a})$	$lpha+eta_1$
A/A	0	1	$\pi_{A/A}$	$\pi_{A/A}/(1-\pi_{A/A})$	$lpha+eta_2$
1 (0.11			() 0	1 (2.11	

 $\log(\text{Odds ratio}, A/A \text{ vs } a/a) = \beta_2, \qquad \log(\text{Odds ratio}, A/a \text{ vs } a/a) = \beta_1$

• For the Genotype OR, we need 2 indicator variables, $x_1 \& x_2$, to represent the genotype categories (i.e., 2 d.f.).

• The hypothesis of no association is tested with $H_o: \beta_1 = \beta_2 = 0$

Multiple Logistic Regression

- Extension to more than one predictor variable (numeric or dummy variables).
- With *p* predictors, the model is:

$$\pi(x_1,\dots,x_p) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}$$

• Adjusted Odds ratio for raising *x*_i by 1 unit, holding other predictors constant:

$$OR_i = e^{\beta_i}$$

• Inferences on β_i and OR_i are conducted as in the case of a single predictor

95% Confidence Interval for Odds Ratio

• Construct a 95% CI for β :

$$\hat{\beta} \pm 1.96 * SE_{\beta} = \left(\hat{\beta} - 1.96 * SE_{\beta} , \hat{\beta} + 1.96 * SE_{\beta} \right)$$

• Exponentiate both endpoints of the CI for β :

$$\left(e^{\hat{eta}-1.96*SE^{\,\circ}_{eta}},e^{\hat{eta}+1.96*SE^{\,\circ}_{eta}}
ight)$$

$$L(p) = \prod_{i=1}^{n} p^{y_i} (1-p)^{1-y_i}$$

= $\exp\left[(\ln p)^{\sum y_i} + (\ln(1-p))^{\sum(1-y_i)}\right]$
= $\exp\left[\sum_{i=1}^{n} \left\{ y_i \ln\left(\frac{p}{1-p}\right) + \ln(1-p) \right\} \right]$

<u>1-parameter (no-intercept) Model</u>

Reparameterize the Likelihood function using:

 $\ln\left(\frac{p}{1-p}\right) = \beta x_i \qquad (1-p) = \frac{1}{1 + \exp(\beta x_i)}$

$$L(\beta) = \exp\left[\sum_{i=1}^{n} \left\{ y_i(\beta x_i) + \ln\left(\frac{1}{1 + \exp(\beta x_i)}\right) \right\} \right]$$

1-parameter (no-intercept) Model

Likelihood:

$$L(\beta) = \exp\left[\sum_{i=1}^{n} \left\{ y_i(\beta x_i) + \ln\left(\frac{1}{1 + \exp(\beta x_i)}\right) \right\} \right]$$

Log Likelihood:
$$l(\beta) = \sum_{i=1}^{n} [y_i \beta x_i - \ln(1 + \exp(\beta x_i))]$$

 $\frac{\mathrm{d}l}{\mathrm{d}\beta} = 0 \quad \Rightarrow \text{ Solve for the MLE of } \beta$

2-parameter Model (with Intercept)

Log Likelihood:

$$l(\beta_0, \beta_1) = \sum_{i=1}^{n} [y_i(\beta_0 + \beta_1 x_i) - \ln(1 + \exp(\beta_0 + \beta_1 x_i))]$$

$$\frac{\partial l}{\partial l} = \frac{\partial l}{\partial l}$$

Solve for:
$$\frac{\partial l}{\partial \beta_0} = 0$$
 $\frac{\partial l}{\partial \beta_1} = 0$

$$\underbrace{f}(\beta_0, \beta_1) = \begin{bmatrix} \frac{\partial l}{\partial \beta_0} \\ \frac{\partial l}{\partial \beta_1} \end{bmatrix} = \begin{bmatrix} f_1(\beta_0, \beta_1) \\ f_2(\beta_0, \beta_1) \end{bmatrix}$$
Hessian Matrix = $f_2'(\beta_0, \beta_1) = \begin{bmatrix} \frac{\partial f_1}{\partial \beta_0} & \frac{\partial f_1}{\partial \beta_1} \\ \frac{\partial f_2}{\partial \beta_0} & \frac{\partial f_2}{\partial \beta_1} \end{bmatrix}$

$$\begin{bmatrix} \beta_0^{n+1} \\ \beta_1^{n+1} \end{bmatrix} = \begin{bmatrix} \beta_0^n \\ \beta_1^n \end{bmatrix} - \begin{bmatrix} \sum_{i=1}^n \frac{-\exp(\beta_0 + \beta_1 x_i)}{(1 + \exp(\beta_0 + \beta_1 x_i))^2} & \sum_{i=1}^n \frac{-x_i \exp(\beta_0 + \beta_1 x_i)}{(1 + \exp(\beta_0 + \beta_1 x_i))^2} \end{bmatrix}^{-1} \begin{bmatrix} \sum_{i=1}^n y_i - \frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)} \\ \sum_{i=1}^n \frac{-x_i \exp(\beta_0 + \beta_1 x_i)}{(1 + \exp(\beta_0 + \beta_1 x_i))^2} & \sum_{i=1}^n \frac{-x_i^2 \exp(\beta_0 + \beta_1 x_i)}{(1 + \exp(\beta_0 + \beta_1 x_i))^2} \end{bmatrix}^{-1} \begin{bmatrix} \sum_{i=1}^n y_i - \frac{\exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)} \\ \sum_{i=1}^n y_i x_i - \frac{x_i \exp(\beta_0 + \beta_1 x_i)}{1 + \exp(\beta_0 + \beta_1 x_i)} \end{bmatrix}^{-1} \end{bmatrix}$$

$$\beta^{n+1} = \beta^n - f'(\beta^n)^{-1} f(\beta^n)$$

In general, Newton-Raphson's method can be expanded to k possible parameters. As a result, the Hessian matrix is always of dimension kxk and all other vectors are of dimension kx1.