Analysis of case/control studies Linear Probability Model (LPM)

« Case/control studies are designed to consider observed genotype as the

random variable, and compare its distribution between cases and controls Y
» The analysis and interpretation is easier if we consider disease status (case
vs. control) as a random outcome, predicted by genotype 1
LPM Regression Line
» These models lend themselves to analysis via logistic regression
Points on the regression line are predicted
probabilities of Y for each value of X
i ‘ i
LPM problems Logistic Function
= Predicted probabilities can be >1 or <0 W
= The error terms vary based on the size of X
. . 1 —
= The errors are not normally distributed since Y takes on only two values
Points on the regression line are predicted
probabilities of Y for each value of X
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Logistic Regression

* Response: Presence/Absence of a characteristic or disease

« Predictor: Numeric variable observed for each case

» Model: 7(x) = Prob. of presence at predictor level x [sometimes p(x)]
Po+P%
e
(%) = I ohAn

* =0 = P(Presence) is the same at each level of x
* >0 = P(Presence) increases as x increases

* <0 = P(Presence) decreases as X increases

Allelic Odds Ratio - revisited

Disease
Allele Yes No
A Tp 1-ms OR. = wal (L—7,)
, = A AL
7l (-x,)
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n, represents the probability that an allele/chromosome drawn at random from the
A alleles/chroms is from an individual with disease (a case subject)

Logistic Regression — Statistical Details
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Model for y;  T(y;)=p"(L-p)" i=1...,n

Logistic Regression & Allelic Odds Ratios

Case allele or control allele?

Allele x  Probability Odds Log Odds =a+fx
a 0 Ty Eﬂ/ ( - Ea) lOg { ]Ta/ (1 - ]Ta)} o
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We can fit a logistic regression model predicting the origin (case or control)
of an allele using x - an indicator variable for allele: (0,1) = (A, a)

Testing H,: =0 is equivalent to testing if the OR=1



Genotype Odds Ratios - revisited

Disease
Yes No
AA T 1-mpn OR. — Tan | (L=70,0)
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Multiple Logistic Regression

Extension to more than one predictor variable (numeric or dummy
variables).

With p predictors, the model is:

eﬂo +hxat et PpXp

Bo+Bxa++BpXp

e X )=
e 0) l+e

* Adjusted Odds ratio for raising x; by 1 unit, holding other predictors
constant:

OR =¢”

* Inferences on g, and OR; are conducted as in the case of a single
predictor

Logistic Regression & Genotype Odds Ratios

Subject is a case?

Genotype x; x; Probability Odds Log odds = + f1x; + PBaxa
aja 0 0 Ta/a Tafal (L= Taya) o

Ala 1 0 Taa Ta/af (1 — Taza) a+p

A/A 0 1 TTa/a Taya/ (1 — Tasa) a+ B

]Og(:Odds ratio, A/A vs a/a ) = ,32, ]Og(:Odds ratio, A/a vs aja ) = ,Bl

+ For the Genotype OR, we need 2 indicator variables, x; & X,, to represent
the genotype categories (i.e., 2 d.f.).

» The hypothesis of no association is tested with H,: ,=,=0

95% Confidence Interval for Odds Ratio

+ Construct a 95% ClI for

B+1.96%SE) = (ﬁ—l.gﬁ*SE; , ﬂ+1.96*SE/})

« Exponentiate both endpoints of the Cl for 5:

(e/A}l.QG*SE; e23+1.96*5E; j



L(p)= H pi(1-p)
= exp[(ln p)zyi + (1n(l - p))z(lyi)}
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1-parameter (no-intercept) Model
Reparameterize the Likelihood function using:
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1-parameter (no-intercept) Model
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Likelihood:

i=1

Log Likelihood:  1(8) = 3 [, ~ In(1 +exp(fx,)]

% =0 -> Solve for the MLE of S

2-parameter Model (with Intercept)

Log Likelihood:
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In general, Newton-Raphson’s method can be expanded to k possible
parameters. As a result, the Hessian matrix is always of dimension

kxk and all other vectors are of dimension kx1.






