
Least Squares Line… . 
 

^ ^ ^

0 1y x� �� �

ˆ residual (or error)i�

Linear Regression 

0 1

0 1

~ (0, )
( )
Y x N

E Y x
� � � � �
� �

� � �
� �

Model: 

Least Squares Estimation of �0, �1 

• Least Squares Estimates for �0 & �1  minimize the 
sum of squared errors (SSE) 
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Least Squares Estimates (LSEs) 
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Inference for the Slope (�1) 
• Standard Error of      : 
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• 2-Sided Test 
– H0: �1 = 0 
– HA: �1 � 0 
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• (1-�)100% Confidence Interval for �1 
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o Narrower CIs can be achieved through study design 



Analysis of Variance in Regression 
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Total (SST) Error (SSE)        Regression (SSR)    

•dfTotal = n-1 dfError = n-2         dfRegression = 1 

Analysis of Variance in Regression 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square 

 
F 

Model SSR 1 MSR = SSR/1 F = MSR/MSE 
Error SSE n-2 MSE = SSE/(n-2)  
Total SST=Syy n-1   
 

• Analysis of Variance - F-test 

• H0: �1 = 0           HA: �1 �� 0  
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Multiple Regression 

• Numeric Response variable (Y) 
• p Numeric predictor variables 
• Model: 

Y = �0 + �1x1 + ��� + �pxp + � 
 

•  Partial Regression Coefficients: �i � effect on the 
mean response of increasing the ith predictor 
variable by 1 unit, holding all other predictors 
constant 

Analysis of Variance  

• Only changes from SLR are the d.f. 
– dfModel = p         dfError = n-p-1 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square 

 
F 

Model SSR p MSR = SSR/p F = MSR/MSE 
Error SSE n-p-1 MSE = SSE/(n-p-1)  
Total SST=Syy n-1   
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Testing the Overall Model 

• Tests whether any of the explanatory variables are 
associated with the response 

• H0: �1=���=�p=0 
• HA: Not all �i = 0 
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Models with Dummy Variables 
• Since genotype is a categorical variable, we need 

to recode its values in order to include it in the 
regression model.  

• If a categorical variable has k levels, need to create 
k-1 dummy variables that take on the values 1 if 
the level of interest is present, 0 otherwise. 

• The baseline level of the categorical variable for 
which all k-1 dummy variables are set to 0 

• The regression coefficient corresponding to a 
dummy variable is the difference between the 
mean for that level and the mean for baseline 
group, controlling for all numeric predictors 

Analysis of Covariance 

• Combination of 1-Way ANOVA and Linear 
Regression 

• Goal: Comparing numeric responses among k 
groups, adjusting for numeric concomitant 
variable(s), referred to as Covariate(s) 

• Clinical trial applications: Response is Post-Trt 
score, covariate is Pre-Trt score 

• Epidemiological applications: Outcomes 
compared across exposure conditions (i.e., 
genotype), adjusted for other risk factors (age, 
BMI, sex,...) 


