Functions of Independent RVs

X1 and X2 are two *independent* draws from the same RV

- X_1 , X_2 is called a <u>Random Sample</u> (RS) of size n=2
- <u>Joint PMF</u>: $f(x_1, x_2) = P[(X_1 = x_1) \cap (X_2 = x_2)]$ since X_1 and X_2 are *independent* $= P[(X_1 = x_1)] \cdot P[(X_2 = x_2)]$ $f_1(x_1) \cdot f_2(x_2)$ =
 - → $f_1(x_1)=1/6$ $x_1=1,2,...,6, z.o.w.$ → $f_2(x_2)=1/6$ $x_2=1,2,...,6, z.o.w.$.,6; z.o.w. S_2 • Example: $X_1 = #$ of spots on the 1st toss of a die $X_2 = #$ of spots on the 2nd toss of a die

 $f(x_1, x_2) = 1/36$ $x_1=1,2,...,6; x_2=1,2,...,6; z.o.w.$

•
$$E[h(X_1, X_2)] = \sum_{x \in S_1} \sum_{x \in S_2} h(x_1, x_2) f(x_1, x_2) = \sum_{x \in S_1} \sum_{x \in S_2} h(x_1, x_2) f_1(x_1) f_2(x_2)$$

$$P = X_1 \bullet X_2$$

$$E[Y] = E[X_1 X_2] = \sum_{x \in S_1} \sum_{x \in S_2} (x_1 x_2) f_1(x_1) f_2(x_2) =$$

• Moment Generating Functions:

$$Y = X_1 + X_2$$

$$M_Y(t) = E\left[e^{tY}\right] = E\left[e^{t(X_1 + X_2)}\right] =$$

$$var(X_{1} + X_{2}) = E[(X_{1} + X_{2}) - (\mu_{1} + \mu_{2})]^{2}$$

$$= E[(X_{1} - \mu_{1}) + (X_{2} - \mu_{2})]^{2}$$

$$= E[(X_{1} - \mu_{1})^{2} + 2(X_{1} - \mu_{1})(X_{2} - \mu_{2}) + (X_{2} - \mu_{2})^{2}]^{2}$$

$$= E(X_{1} - \mu_{1})^{2} + E[2(X_{1} - \mu_{1})(X_{2} - \mu_{2})] + E(X_{2} - \mu_{2})^{2}$$

$$= var(X_{1}) + 2E(X_{1} - \mu_{1})E(X_{2} - \mu_{2}) + var(X_{2}) *$$

$$= var(X_{1}) + var(X_{2})$$