Chapter 4 – eXtra HW problems on Sample Size & Type II error

4.X2 In general, if we keep the level of confidence fixed, how much do you need to increase the sample size in order to cut the width of a confidence interval in half?

4.X3 A researcher wanted to test the hypotheses Ho: μ =38 vs. Ha: μ >38 with α =0.05. A random sample of 50 measurements from the population yielded a sample mean of 40.1. Assume that σ =5.6 is known.

(a) What conclusions can you make about the hypotheses based on the sample?

(b) Could your conclusion to part (a) be a Type II error?

(c) Calculate the probability of a Type II error if the actual value of μ =39.

4.X4 The administrator of a nursing home would like to do a time-and-motion study of staff time spent per day performing nonemergency tasks. Prior to the introduction of some efficiency measures, the average worker-hours per day spent on these tasks was μ =16. The administrator wants to test whether the efficiency measures have reduced the value of μ , assuming that σ =7.64 is known. How many days must be sampled to test the proposed hypothesis if she wants to have α =0.05 and the probability of Type II error of at most 0.10 when the actual value of μ =12 hours?

4.X5 A study was conducted of 90 adult male patients following a new treatment for congestive heart failure. One of the variables measured on the patients was the increase in capacity (in minutes) over a 4-week treatment period. The previous treatment regime had produced an average of μ =2 minutes. The researchers wanted to evaluate whether the new treatment had increased the value of mu in comparison to the previous treatment, assuming that σ =1.05 is known. The data yielded a sample mean of 2.17.

(a) Using α =0.05, what conclusion can you draw about the research hypothesis?

(b) What is the probability of making a Type II error if the actual value of μ =2.1?