NOEL CRESSIE*

Most data have a space and time label associated with them;
data that are close together are usually more correlated than
those that are far apart. Prediction (or forecasting) of a
process at a particular label where there is no datum, from
observed nearby data, is the subject of this article. One
approach, known as geostatistics, is featured, from which
linear methods of spatial prediction (kriging) will be con-
sidered. Brief reference is made to other linear/nonlinear,
stochastic/deterministic predictors. The (linear) geostatis-
tical method is applied to piezometric-head data around a
potential nuclear-waste repository site.

KEY WORDS: Anisotropy; Covariance function; Isotropy;
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1. INTRODUCTION

Statistics, the science of uncertainty, attempts to find
structure in chaos. The simplest structure imposed assumes
that observations on a phenomenon are taken under identical
conditions, and independently from one observation to an-
other; that is, the data are independent and identically dis-
tributed (iid). Traditionally, this is generalized by allowing
nonidentical means but retaining iid errors. Standard statis-
tical techniques (e.g., see Hogg and Craig 1978) can then
be used to build a statistical model and to estimate its pa-
rameters. But the iid assumption should not be taken for
granted, particularly when there are good physical reasons
to abandon it. It is the relaxation of the independence part
of the assumption that I shall address in this article.

We have not yet been able to escape the three-dimensional
world in which we live, nor the unidirectional flow of time
through which we live. The notion that data close together,
in time or space, are likely to be correlated (i.e., cannot be
modeled as independent) is natural and has been used suc-
cessfully by statisticians to model the processes generating
the data. Pure temporal models, or time series models as
they have come to be known, are usually based on identi-
cally distributed errors that are dependent and occur at equally
spaced time points [e.g., the autoregressive moving average
models of Box and Jenkins (1970)]. The equal spacing and
unidirectional flow of time underlie the construction of these
models. .

Spatial models are a more recent addition to the statistics
literature. Geology, soil science, crop science, forestry, as-
tronomy, or simply any discipline that works with data
collected from different spatial locations needs to develop
(not necessarily statistical) models that indicate when there
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is dependence between measurements at different locations.
The models need to be more flexible than their temporal
counterparts; for example, it is not reasonable to assume
that spatial locations of data occur regularly, and “past,”
“present,” and “future” make way for (possibly aniso-
tropic) dependence in a multitude of directions. Cliff and
Ord (1981), Ripley (1981), and Upton and Fingleton (1985)
have written books concerned with the statistical analysis
of spatial data.

A scientific problem that is both temporal and spatial in
nature is the study of the effects of atmospheric pollution,
and in particular acid rain (e.g., see Bilonick 1985; Cressie,
Gotway, and Grondona, in press). Daily data collection over
a number of years at various locations throughout the north-
east United States yields a massive data set. But most of it
is temporal so that, spatially speaking, the data are still
rather sparse. Nevertheless, spatial prediction is just as im-
portant as temporal prediction, since people living in those
cities and rural districts without monitoring stations have
the same right to know whether their water or their air is
polluted. Purely spatial problems are considered here, and
to provide a clear comparison between spatial methods and
temporal methods a data set that does not have a temporal
component will be chosen in Section 4.

Geostatistics is usually concerned with spatial prediction,
but there are other important areas (such as stationary-dis-
tribution estimation, effect of aggregation, and spatial de-
sign) that offer fruitful open problems. These could all be
lengthy articles in themselves; however, in this article I
present the basics of a spatial-prediction method known as
(ordinary) kriging. For a comparative survey of various
forms of kriging with other stochastic and nonstochastic
methods of spatial prediction, see Cressie (1989a), where
15 methods are considered. These include disjunctive krig-
ing, Markov-random-field prediction, inverse-distance-
squared weighted averaging, and spline smoothing.

2. THE VARIOGRAM

First, a measure of the (second-order) spatial dependence
exhibited by the data is needed. I define a model-based
parameter (which is a function) known as the variogram;
then its estimate will provide such a measure. Statisticians
are used to dealing with autocovariance functions. It will
be demonstrated that the class of processes with variogram
functions includes the class of processes with autocovari-
ance functions; hence kriging can be carried out on a wider
class of processes than the one traditionally used.

Let{Z(s): s € D C R“} be a real-valued stochastic process
defined on a domain D of the d-dimensional space R¢, and
suppose that differences of variables lagged h apart vary in
a way that depends only on h. That is,

var(Z(s +h) — Z(s)) = 2y(h) foralls,s+h € D;
(1)
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typically the spatial index s is two- or three-dimensional
(i.e., d =2 or 3). The quantity 2-y(-), which is a function
only of the difference between the spatial locations s and
s + h, has been called the variogram by Matheron (1963),
although earlier appearances in the scientific literature can
be found. It has been called a structure function by Yaglom
(1957) in probability and Gandin (1963) in meteorology,
and a mean-squared difference by Jowett (1952) in time
series. Kolmogorov (1941a) introduced it in physics to study
the local structure of turbulence in a fluid. Nevertheless, it
has been Matheron’s mining terminology that has persisted.
The variogram must satisfy the conditional negative semi-

definiteness condition, 2f_; Z¢_; a;a;2y(s; — s;) = 0, for
any finite number of spatial locations {s;: i = 1, . . ., k},
and real numbers {g;: i = 1, . . ., k} satisfying =¥_, a;, =

0. When 2y(h) = 2v°(||h|)), the variogram is said to be
isotropic. Various parametric models were presented by
Journel and Huijbregts (1978, sec. II1.B).

- Replacing (1) with the stronger assumption

cov(Z(s+h), Z(s)) = C(h) foralls,s+he&D, (2)
and specifying the mean function to be constant,
E(Z(s)) = p foralls € D, 3)

defines the class of second-order (or wide-sense) stationary

processes in D, with covariance function C(-). Time series

analysts usually assume (2) and work with the quantity p(+)

= (C(+)/C(0). Conditions (1) and (3) define the class of

intrinsically stationary processes, which is now shown to

contain the class of second-order stationary processes.
Assuming only (2),

y(h) = C(0) — C(h); “4)

that is, the semivariogram (half of the variogram) is related
very simply to the covariance function. An example of a
process for which 27y(+) exists but C(-) does not is a one-
dimensional standard Wiener process {W(r): t = 0}. Here

29(h) = |h| (= < h < ), but cov(W(1), W(u)) =
min(¢, u), which is not a function of | — u|. Thus the class
of intrinsically stationary processes strictly contains the class
of second-order stationary processes.

Now I turn to finding an estimator of the variogram,
which also serves as a measure of spatial dependence among
the data {Z(s;): i = 1, ..., n}. Suppose these are obser-
vations on an intrinsically stationary process [i.e., a process
that satisfies (1) and (3)], taken at the n spatial locations
{s;;i =1, ..., n}. Because of (3), var(Z(s +h) — Z(s))
E(Z(s+h) — Z(s))?, hence the method-of-moments
estimator of the variogram 2vy(h) is

2y(h) = N%) (Z(s) = Z(s))*/| N (h)

h € R4,

, 5)
where the average in (5) is taken over N(h) = {(s;, s;): s;
—s; = h} and [N(h)| is the number of distinct elements
in N(h). For irregularly spaced data, N(h) is usually mod-
ified to {(s;, s;): s; — s, € T(h)}, where T(h) is a tolerance
region of R¢ surrounding h (see Sec. 4). Other estimators,
more robust than (5), are given in Cressie and Hawkins
(1980). Parametric models can be fit to the estimator (5)
by various means; as a compromise between efficiency and
simplicity, Cressie (1985) proposes minimizing a weighted
sum of squares,

K

£

k=1

2y(h(k))

2
— 1¢ [N(h(k))|,
237(h (k). ) }I (h(k))|

with respect to variogram model parameters 0. The sequence
h(1), . . ., h(K) denote the ‘“‘lags” at which an estimator
(5) was obtained, and that satisfy conditions such as those
given by Journel and Huijbregts (1978, p. 194, sec. 111.42).
Zimmerman and Zimmerman (1989) summarize and com-
pare several methods of variogram-parameter estimation.
They find that no method dominates, but their simulation
results indicate that the weighted least squares approach
usually performs well and never does poorly.
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Location and Levels of Piezometric-Head Data in the Wolfcamp Aquifer: *, Location of Amarillo, Texas (Potter County).



Table 1. Wolfcamp-Aquifer Data

x y Z(x, y) x y Z(x, y)
42.78275 127.62282 1,464 103.26625 20.34239 1,591
—27.39691 90.78732 2,553 —14.31073 31.26545 2,540
-1.16289 84.89600 2,158 —18.13447 30.18118 2,352
—18.61823 76.45199 2,455 —18.12151 29.53241 2,528
96.46549 64.58058 1,756 —9.88796 38.14483 2,575
108.56243 82.92325 1,702 —12.16336 39.11081 2,468
88.36356 56.45348 1,805 11.65754 18.73347 2,646
90.04213 39.25820 1,797 61.69122 32.49406 1,739
93.17269 33.05852 1,714 69.57896 33.80841 1,674
97.61099 56.27887 1,466 66.72205 33.93264 1,868
90.62946 35.08169 1,729 —36.65446 150.91456 1,865
92.55262 41.75238 1,638 —19.55102 137.78404 1,777
99.48996 59.15785 1,736 —21.29791 131.82542 1,579
—24.06744 184.76636 1,476 —22.36166 137.13680 1,771
—26.06285 114.07479 2,200 21.14719 139.26199 1,408
56.27842 26.84826 1,999 7.68461 126.83751 1,527
73.03881 18.88140 1,680 —8.33227 107.77691 2,003
80.26679 12.61593 1,806 56.70724 171.26443 1,386
80.23009 14.61795 1,682 59.00052 164.54863 1,089
68.83845 107.77423 1,306 68.96893 177.24820 1,384
76.39921 95.99380 1,722 70.90225 161.38136 1,030
64.46148 110.39641 1,437 73.00243 162.98960 1,092
43.39657 53.61499 1,828 59.66237 170.10544 1,161
39.07769 61.99805 2,118 61.87429 174.30178 1,415
112.80450 45.54766 1,725 63.70810 173.91453 1,231
54.25899 147.81987 1,606 5.62706 79.08730 2,300
6.13202 48.32772 2,648 18.24739 77.39191 2,238
—3.80469 40.40450 2,560 85.68824 139.81701 1,038
—2.23054 29.91113 2,544 105.07646 132.03181 1,332
-2.36177 33.82002 2,386 —101.64278 10.65106 3,510
—2.18890 33.68207 2,400 —145.23654 28.02333 3,490
63.22428 79.49924 1,757 —73.99313 87.97270 2,594
—10.77860 175.11346 1,402 —94.48182 86.62606 2,650
—18.98889 171.91694 1,364 —88.84983 76.70991 2,533
—38.57884 158.52742 1,735 —120.25898 80.76485 3,571
83.14496 159.11558 1,376 —86.02454 54.36334 2,811
—21.80248 15.02551 2,729 —72.79097 43.09215 2,728
—23.56457 9.41441 2,766 —100.17372 42.89881 3,136
—20.11299 22.09269 2,736 —78.83539 40.82141 2,553
—16.62654 17.25621 2,432 —83.69063 46.50482 2,798
29.90748 175.12875 1,024 —95.61661 35.82183 2,691
100.91568 22.97808 1,611 —87.55480 29.39267 2,946
101.29544 22.96385 1,548
NOTE: The first two columns are data locations s; = (x;, ¥;), in miles from an arbitrary origin; the third column is piezometric head Z(s)), in feet above sea level. Here i = 1, ..., 85.

To derive the kriging equations in Section 3, I assume
that the variogram is known. In practice the estimation and
fitting stage of the spatial analysis has to be carried out first,
and this I do for the example in Section 4. Discussion of
the effect of this initial variogram fitting is given in Section
5.

3. KRIGING

In Matheron’s geostatistics and Gandin’s objective anal-
ysis, the variogram is used to define coefficients in an op-
timal linear predictor. Suppose it is desired to predict Z(s,)
at some unsampled spatial location s, using a linear function
of the data

Zs) = 2 NZ(s), (©6)
which is unbiased and minimizes the mean squared predic-
tion error E(Z(sg) — 2(50))2. Then a straightforward min-
imization using Lagrange multipliers to ensure unbiasedness
yields optimal A’s that satisfy an (n + 1)-dimensional equa-
tion depending on 2y(s; — s;), %, j = 0, 1, ..., n:

A=y, )

where N = (A, Ay, - . o, A m)', ¥y = (Y(S; — Sg)s - - oy
(s, — So), 1)’, and

= y(s; — s)), i=1,...,n j=1,...,n
=1, i=n+1, j=1,...,n
=0, i=n+1, j=n+1;

I" is a symmetric (n + 1) X (rn + 1) matrix. The minimized
root mean squared prediction error (sometimes called krig-
ing standard error) is given by

; 12
0 (Sg) = {Zl Ay(s; — Sg) + m} : (8)

Matheron (1963) called this spatial prediction method
kriging, after D. G. Krige (a South African mining engineer
who, in the 1950s, developed empirical methods for deter-
mining true ore grade distributions from distributions based
on sampled ore grades), whereas Gandin (1963) called it
optimal interpolation. In fact, derivation of an optimal linear
predictor (with known mean w) can be found earlier in the
literature in works of Wold (1938), Kolmogorov (1941b),
and Wiener (1949); see Cressie (1989b) for further historical
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Figure 2. Scatterplot of Piezometric-Head Data. Verticle lines
are sited at the spatial locations, and their heights are equal to the
corresponding piezometric heads (in feet above sea level).

observations. The kriging predictor given by (6) and (7)
assumes that the process Z contains no measurement error;
Cressie (1988) has details on how to predict noiseless ver-
sions of Z.

4. FLOW OF GROUNDWATER FROM A
NUCLEAR-WASTE SITE

Several years ago there were three potential high-level
nuclear-waste sites proposed in Nevada, Texas, and the state
of Washington. This section contains a geostatistical anal-
ysis of groundwater flow in the surrounding regions of one
of those sites.

The chosen site will eventually contain more than 68,000
high-level waste canisters placed about 30 feet apart in holes
or trenches surrounded by salt, covering an area of about
two square miles, and buried deep in the ground. Leaks
could occur, however, or the radioactive heat could cause
the tiny quantities of water in the salt to migrate toward the
heat until eventually each canister is surrounded by water
(about six gallons). The chemical reaction of salt and water
would create hydrochloric acid that could slowly corrode
the canisters.

Using geostatistics, I address the question Where would
radionuclide contamination flow for the site in Deaf Smith

County, Texas? (As a matter of interest, a decision was
10 4

R a .
2y(h) i

made in December 1987 by the U.S. Congress to locate the
site in Nevada, probably at Yucca Mountain.) From pie-
zometric-head data for the Wolfcamp Aquifer, a variogram
will be fit and kriging will be used to predict the head surface
throughout a region in West Texas/New Mexico.

Figure | shows the 85 data and their locations (in prin-
ciple, obtained by drilling a narrow pipe into the aquifer
and letting the water find its own level in the pipe); the
measurements are in units of feet above sea level. This figure
is essentially that found in Harper and Furr (1986), which
was my source for the piezometric-head data along with
their spatial coordinates. The data are repeated here in Table
1, for completeness.

The proposed nuclear-waste site was located in Deaf Smith
County, seen in Figure 1 to border with New Mexico, in
the Texas panhandle. For country-music listeners who would
like to get their bearings, Amarillo, Texas, is also shown
on the map.

The goal in analyzing this (purely) spatial data set is to
draw a map of a predicted surface, based on the (irregularly
located) 85 data available. An advantage of using a sto-
chastic method of prediction (kriging) is that a map of root
mean squared prediction error can also be drawn, quanti-
fying the uncertainty in the predicted piezometric-head sur-
face.

In the notation of Section 3, it is desired to use the pre-
dictor Z(sy) defined by (6), along with o,(s,) defined by
(8), as sy varies over the extent of the Wolfcamp Aquifer.
The kriging equations (7) are straightforward to solve once
the variogram (1) is known.

Assume that the data {Z(s,), . . ., Z(Sgs)} given in Table
1 are observed without measurement error, and that they
are a sampling from an intrinsically stationary stochastic
process. [In fact, Harper and Furr (1986) did not make
Assumption (3), assuming instead linear deterministic trend
(see Sec. 5 for further discussion).] Estimation of the var-
iogram defined by (1) allows (7) to be solved and hence
maps based on (6) and (8) to be drawn.

It is clear from the data shown in Figure 2 that the behavior
of the process in the NE-SW direction is different from that
in the NW-SE direction. For this reason variogram esti-
mators based on (5) were calculated in these two directions.

Figure 3a shows 2y(h) for h € {h(l)e, . . ., h(24)e};
e is a vector of length |e|| = 5 miles, and direction 7/4;
h(k)y = k — Y for k = 1, ..., 24. Figure 3b shows a
similar plot, but e has direction 37/4. Since the data are

10 b

2y(h)

Figure 3. Experimental Variogram in the (a) NE-SW and (b) NW-SE Directions. The dashed line is the weighted-least-squares fit of a
power model: 2y(h; co, b, p) = 2{c, + b|h|P} (h > 0). On the horizontal axis, 1 unit = 5 miles; on the vertical axis, 1 unit = 105ft.2,
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not on a regular grid, tolerance regions for N(h) in (5) have
to be declared. The pair of locations (s, u) € N(h) if ||s — u]|
— |Ih]| is bounded between =2.5 miles, and the direction
of (s — u) minus the direction of h is bounded between =+ 77/
4 radians.

Superimposed on Figure 3 are weighted-least-squares fits
of the variogram model

2y(h; 0) = 0, h=0
2{C0+b|h|p}, h>0, C0>0,

b>0,0=p<2. (9

In Figure 3a (NE-SW direction),

0 = (&, by, p) = (14 x 103ft.2, 38, 1.99);
in Figure 3b (NW—SE direction),

O = (69, by, p) = (14 X 10°f2, 15, 1.99).

Thus the process is exhibiting anisotropy; the fitted two-
dimensional anisotropic semivariogram model used for krig-
ing is

v(h; 0) = Co + {5%”; r? cosz<g - ¢>

pi2
+ b%P 2 cos2<g + d))} ,  (10)

where h = (h;, h,) = (r cos ¢, r sin ¢). Geometrical
anisotropy (Journel and Huijbregts 1978, p. 179) was as-
sumed in deriving (10). »

From the (fitted) variogram (10), contour maps of the
kriging predictor (6) and the kriging standard error (8) can
be drawn. The Toolkit package by Geostokos Ltd., London,
was used; it is interactive and well-documented, has the
anisotropy option built in, and outputs prediction and stan-
dard error values for easy contouring. The results are dis-
played in Figure 4. Figure 5 shows a three-dimensional plot
of the ordinary-kriging surface of Figure 4a, viewed from
the northeast corner of the region under study. It can be
concluded from these maps that contaminated groundwater
from Deaf Smith County, Texas, would flow directly
“downhill” toward Amarillo, Texas.
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(a) Predicted Surface (6) and (b) Standard Error Surface (8) (in ft.) Obtained by Kriging: x, Center of Deaf Smith County;

5. CONCLUDING REMARKS

In attempting to paint a picture of the geostatistical method
in broad brushstrokes, many subtleties have been glossed
over. David (1977) and Journel and Huijbregts (1978) are
good sources for these, or patient readers might wait to
consult chapters 2—5 of Cressie (in press).

One of the least subtle observations one might make from
Section 4 is that the constant-mean assumption (3) may not
hold. Write

Z(s) = u(s) + &(s),

where E(Z(s)) = pu(s) and 6(+) is a zero mean, intrinsically
stationary stochastic process with var(8(s + h) — 8(s)) =
var(Z(s + h) — Z(s)) = 2y(h). The “large-scale variation”
m(+) and the ‘“‘small-scale variation” 6(+) are modeled as
deterministic and stochastic processes, respectively, but
without any way of making each of them identifiable. What
is one person’s mean structure could be another person’s
correlation structure.

Often this problem is resolved in a substantive application
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Figure 5. Three-dimensional View of Ordinary-Kriging Surface
{Z(sy): s, € D}, From the Northeast Corner of D.
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by relying on scientific or habitual reasons for determining
the mean structure. Cressie (1986) discussed various ways
of kriging in the presence of nonconstant mean. The contour
map of predicted values {Z(s,): s, € D} typically does not
change much, but the map of kriging standard errors does;
Cressie (in press, sec. 4.1) illustrates this point on the Wolf-
camp aquifer data.

Another problem that geostatistics has yet to address prop-
erly is the effect of estimating variogram parameters on
mean squared prediction errors. Intuitively, this estimation
should lead to larger actual prediction standard errors than
or(sg) given by (8). Zimmerman and Cressie (1988) have
been able to quantify this intuition in several special cases.

In this article I have summarized the geostatistical method,
featuring a particular method of spatial prediction known
as kriging. Many other prediction methods, both stochastic
and nonstochastic, are available, and are summarized in
Cressie (1989a). Confronted with a set of data, which is the
best method to apply? Depending on which model is true,
the answer may change drastically. For this reason, several
authors have conducted investigations where the values to
be predicted were actually known. They then compared the
performance of various methods by determining the close-
ness of predicted to actual. For example, Laslett, Mc-
Bratney, Pahl, and Hutchinson (1987) found interpolating
methods in general to be poor, and Laplacian smoothing
splines to be as good as kriging (for predicting soil pH); the
relationship between kriging and splines was reviewed by
Watson (1984). In all comparisons, on real and simulated
data, universal kriging generally did as well or better than
the other methods.

Intuitively, the prediction method must be flexible, adapt-
ing to the underlying spatial variation in the data. Kriging
has this flexibility, since the spatial dependence structure is
first gauged from an initial data analysis, before the kriging
equations are solved. Unlike splines, kriging adapts to the
quality and quantity of spatial dependence demonstrated by
the data, produces prediction standard errors, and easily
handles prediction of an unobservable whose support is dif-
ferent from those of the data (Matheron 1963).

[Received October 1987. Revised May-1989.]
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