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[1] This paper provides a general statistical methodology for modeling environmental
pathogen concentrations in natural waters. A hierarchical model of pathogen
concentrations captures site and regional random effects as well as random laboratory
recovery rates. Recovery rates were modeled by a generalized linear mixed model. Two
classes of pathogen concentration models are differentiated according to their ultimate
purpose: water quality prediction or health risk analysis. A fully Bayesian analysis using
Markov chain Monte Carlo (MCMC) simulation is used for statistical inference. The
applicability of this methodology is illustrated by the analysis of a national survey of
Cryptosporidium parvum concentrations, in which 93% of the observations were zero
counts. INDEX TERMS: 1860 Hydrology: Runoff and streamflow; 1871 Hydrology: Surface water

quality; 1894 Hydrology: Instruments and techniques; KEYWORDS: Bayesian analysis, Markov Chain Monte

Carlo, waterborne pathogens, Cryptosporidium parvum, generalized linear mixed model

Citation: Crainiceanu, C. M., J. R. Stedinger, D. Ruppert, and C. T. Behr, Modeling the U.S. national distribution of waterborne

pathogen concentrations with application to Cryptosporidium parvum, Water Resour. Res., 39(9), 1235, doi:10.1029/2002WR001664,

2003.

1. Introduction

[2] Pathogenic waterborne microorganisms represent a
serious threat to drinking water quality. In 1990, a Science
Advisory Panel to theU.S. Environmental Protection Agency
(U.S. EPA) described microorganisms as the greatest
remaining challenge to health risk management for drinking
water suppliers [Science Advisory Board, 1990]. To assess
the health effects of long-term exposure to a specific
waterborne pathogen and better define regulations for
treatment plants, one needs first to understand the distribu-
tion of background pathogen concentrations.
[3] There are several challenges in collecting and mod-

eling pathogen concentration data. First, the true concentra-
tion cannot be observed directly. Instead, laboratory
technicians discretely count the number of pathogens in a
sample of water. Moreover, the counting process of micro-
scopic organisms in a laboratory is subject to various
sources of error leading to a count of only a fraction of
the organisms originally present in a water sample. This
fraction varies randomly and can depend on the laboratory
that analyzes the sample and on water quality attributes.
[4] The pathogen concentrations are likely to exhibit

spatial and temporal correlations as well as dependence on
covariates, such as turbidity, streamflow rates, land use and
seasonality. The main objective of this paper is to provide a
general methodology for the statistical modeling of spatially

distributed pathogen concentrations based upon available
count data. For this purpose we develop a model incorpo-
rating covariates that are likely to have a causal effect on
concentrations. The model has a hierarchical structure for
observations within sites, sites, regions and an overall
national average. A fully Bayesian approach using Markov
chain Monte Carlo (MCMC) simulation is used for statis-
tical inference. As an illustration of this methodology we
use the EPA’s national Information Collection Rule (ICR)
survey that yielded Cryptosporidium count data. We also
use ICR Giardia data to illustrate some interesting
phenomena not found in the Cryptosporidium data set.
[5] Cryptosporidium parvum is a microscopic waterborne

pathogen that can produce gastrointestinal illness in healthy
individuals and serious complications or even death in
individuals with a weakened immune system [Meinhardt et
al., 1996]. Cryptosporidium and Giardia spread in the
environment as microscopic spore-like structures called
oocysts for Cryptosporidium and cysts for Giardia. These
(oo)cysts are resistant to many environmental stresses. In
particular, Cryptosporidium oocysts are resistant to chlori-
nation causing it to be a health risk in water supplies that
depend upon chlorination without filtration or other
processes that would reliably remove them.
[6] In response to recent outbreaks, the US EPA con-

ducted a national survey of Cryptosporidium concentrations
under the ICR described by U.S. EPA [2001]. The ultimate
goal of the investigations was to develop revised water
treatment standards. The ICR survey was conducted over a
period of 18 months and included 350 major water users.
[7] Figure 1 shows the oocyst counts for the ICR survey.

A huge proportion of these observations are zero counts
(93%). Among the remaining nonzero observations most
are just one or two, but there exists several large counts (of
38, 35, 30) indicating strong overdispersion with respect to
the Poisson distribution. The statistical analysis of these
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data is challenging because of the discrete nature of the
response variable (oocyst counts), the high frequency of
zero counts, lack-of-fit for the standard Poisson distribution,
spatial and temporal correlation structure, seasonality, ran-
dom effects, variable recovery rates, and missing observa-
tions [Messner and Wolpert, 2002].
[8] The paper is organized as follows. Section 2 provides

a literature review for Cryptosporidium risk and statistical
modeling of count data. Section 3 discusses Bayesian
analysis using Markov Chain Monte Carlo (MCMC)
simulation and comparisons with standard likelihood
analysis. Section 4 provides a general methodology for
Bayesian modeling of pathogen counts including a subsec-
tion on modeling recovery rates. Inference and results for the
recovery rate models are also discussed. Section 5 presents
results for the ICR data set for a selected set of models.
Section 6 discusses the prediction of pathogen distributions.
Section 7 provides the conclusions of the paper.

2. Literature Review

2.1. Cryptosporidium parvum Risk

[9] Public health concerns have been high ever since
Cryptosporidium caused large outbreaks of gastrointestinal
illness in the US, most notably in Milwaukee [Solo-
Gabrielle and Neumeister, 1996]. Additional outbreaks have
been detected in the United Kingdom, Canada, Australia,
and Japan [Meinhardt et al., 1996; Clancy, 2000; Hashimoto
et al., 2001; Laing, 2002]. Studies have also shown endemic
rates of such illnesses to be between 0.5 and 5 million cases
in the U.S. each year [Fayer et al., 1997].
[10] Rose et al. [1997] document the frequency of occur-

rence and prevalence of Cryptosporidium in surface waters

across North America based upon a number of different
reports. The studies that had been conducted failed to
provide a complete picture of such a complex issue.
Cryptosporidium is largely unaffected by chlorination levels
that are acceptable for water treatment while other
treatments are costly [Juranek, 1995; Okun et al., 1997;
Brodeur, 2001; Dugan et al., 2001]. Models are needed to
support health risk analyses that guide public policy and
development of the EPA regulations in the search for the
appropriate tradeoff among microbial risks, chlorination and
other disinfection procedures, and treatment costs [Putnam
and Wiener, 1995; Regli et al., 1999; Casman et al., 2000;
Messner et al., 2001; U.S. EPA, 2001].
[11] Public health concerns have led to the collection of

data on Cryptosporidium concentrations and models of its
frequency of occurrence [Haas and Rose, 1996; Parkhurst
and Stern, 1998]. Count data describing the environmental
concentration of Cryptosporidium appear to be overdis-
persed relative to the Poisson distribution, as would be
expected if environmental concentrations vary over time
[Stedinger and MacKay, 1998].
[12] Likely sources of Cryptosporidium are of great

concern. Large mammals, particularly cows in dairy pro-
duction, are an obvious potential source [National Research
Council, 1999; Ong et al., 1996]. LeChevallier and Norton
[1992] found water turbidity to be a significant indicator
of elevated concentrations. Other possible indicators
are Giardia, fecal coliforms, Clostridium, alkalinity, water
hardness, pH, and river discharge [Atherholt et al., 1998;
Walker, 1999, chap. 15–19]. Several studies found relation-
ships between concentrations and seasonal factors [Hansen
and Ongerth, 1991]. Walker and Stedinger [1999] suggest
that wastewater treatment plants are likely to be important

Figure 1. Cryptosporidium count data in the ICR survey.
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sources of oocysts. Poulton et al. [1992] found that oocyst
concentrations were highest during peak river flows and
immediately after rainfall events, suggesting sources of
oocysts included sewage discharges.

2.2. Modeling of Count Data

[13] McCullagh and Nelder [1989] present generalized
linear models (GLMs) as a flexible class of regression
models that can accommodate discrete responses. Poisson
regression, a standard GLM, is used by many statisticians to
explain discrete count data. Grenfell and Wilson [1997]
applied GLMs to parasite data using Poisson and negative
binomial errors. Walker [1999] studied a Cryptosporidium
data set for the Delaware River using several GLMs and
concluded that a negative binomial model provided a better
fit than a Poisson distribution.
[14] National pathogen surveys generate complex data

sets with significant spatial and temporal correlation struc-
ture that is not captured by simple GLMs. Random effects
can be added to represent this structure resulting in gener-
alized linear mixed model (GLMM) [Breslow and Clayton,
1993; Littell et al., 1996; McCulloch and Searle, 2001;
Maiti, 2001]. Mixed models with random effects have been
shown to be effective for count data with spatial variation
[Christensen and Waagepetersen, 2002;Wikle, 2002; Best et
al., 2002]. To model the additional uncertainty in the
pathogen counting process, the pathogen model in section 4
proceeds beyond the standard GLMMs.
[15] While models including complex random effects

structures that reasonably represent the data set are desirable,
until recently the practitioner was faced with insurmountable
computational problems. Section 3 explains why the maxi-
mum likelihood estimation for such models requires com-
putation of analytically intractable integrals. This could be
very difficult even for problems with a modest number of
random effects [Carlin and Louis, 2000]. GLMM’s can be
fitted using ‘‘PROC GLIMMIX’’ in SAS; however,
GLIMMIX uses a Laplace approximation which is known
to introduce bias in the estimation of variance components
[Lin and Breslow, 1996]. McCulloch [1997] shows how to
calculate the exact maximum likelihood estimate using a
computationally intensive Monte Carlo EM algorithm.
Bayesian analysis using MCMC simulation has become
the standard statistical tool for inference in such complex
models [see, e.g., Gilks et al., 1996; Carlin and Louis,
2000] and WinBugs [Spiegelhalter et al., 2000] is the
standard software package for such analyses. Case studies in
Bayesian statistics are provided, for example, by Gatsonis et
al. [2002a, 2002b]. Bayesian Monte Carlo methods are very
flexible and are already seeing wide application in water
resources [Kuczera, 1999; Bates and Campbell, 2001;
Wang, 2001]. Messner and Wolpert [2002] apply MCMC
techniques to pathogen data sets.

3. Bayesian Analysis Using MCMC

[16] Bayesian analysis using MCMC simulation has be-
come the standard for statistical inference in complex
models. It is preferred in this paper over the more classical
approaches, such as Maximum Likelihood (ML) inference,
because it is computationally feasible and provides the
entire joint posterior distribution of the parameters given
the data.

[17] Assume that the response variables y1, . . ., yn (in our
case pathogen counts) have a conditional distribution f ( yiju,
B, S2), where u are random effects, B are parameters for the
fixed effects, and S

2 represents the variance components.
Assuming independence among the yi given (u, B, S2), the
conditional (given u) likelihood function is

f yju;B;S2
� �

¼
Yn
i¼1

f yiju;B;S2
� �

: ð1Þ

If the distribution for the random effects u has probability
density function (pdf ) r(ujD), where D are the parameters
of the distribution of u, then the unconditional likelihood
function with this data is

L B;S2;Djy
� �

¼
Z

f yju; B; s2
� �

r ujDð Þdu: ð2Þ

If it were available, this unconditional likelihood would be
the basis of all likelihood inference. For example, the
maximum likelihood estimate would be the value of (B, S2)
maximizing (2). However, computation of this uncondi-
tional likelihood function at any point of the parameter
space requires the evaluation of an integral whose
dimension is equal to the dimension of the random effects
vector, u, which is usually very large. Although there are
recently developed methods for approximating the uncondi-
tional likelihood or computing the MLE, e.g., the expecta-
tion maximization (EM) algorithm, Bayesian analysis
through MCMC provides a more elegant approach. Mixed
models can be viewed as a step toward Bayesian statistics.
In mixed models, some parameters, called the random
effects, are modeled as random variables. Taking this
approach a little further, we arrive at Bayesian analysis
where all parameters of the model are considered to be
random variables with specified prior distributions. Let r(B),
r(S2), and r(D) be the pdf’s of the prior distributions of B,
S2, and D, respectively. Then the pdf of the joint
distribution of the data, random effects, and parameters
parameters ( y, u, Y), with y = (B, S2, D) is

r y; u;Yð Þ ¼ f yju; B;S2
� �

r ujDð Þr Bð Þr S2
� �

r Dð Þ: ð3Þ

Using Bayes rule, the joint posterior density of the
parameters and random effects given the data has the pdf

r u;Yj yð Þ ¼ r y; u;Yð ÞR
r y; u;Yð Þdu dY

ð4Þ

The numerator of this pdf has a known analytical form but
the denominator, representing the normalizing constant, is
a high dimensional integral, even more complicated than
the integral in equation (2). Therefore, the exact computa-
tion of the posterior pdf is intractable. Markov Chain
Monte Carlo allow simulation from distributions with
unknown normalizing constants. The general philosophy
behind MCMC is to produce a correlated sample from
distributions that eventually converge to the target
distribution whose normalizing constant may be unknown.
The outcome of this procedure is not only the posterior
mean and variance but also the entire posterior distribution
of the parameter vector, or any explicit function of the
parameters. A direct implication is that no asymptotic
approximation is needed to describe the variability of
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estimates as is often done in maximum likelihood analyses
[Gelman et al., 1995, p. 4].
[18] MCMC can be used to generate a sample from any

probability distribution whose density is known up to a
multiplicative constant. Given a full joint distribution
(prior+likelihood) the goal is to sample values from the
posterior distribution of the unknown parameters given the
data. The standard software for Bayesian analysis through
MCMC simulations is WinBUGS 1.3 [Spiegelhalter et al.,
2000]. WinBUGS uses Gibbs sampling and Metropolis-
within-Gibbs algorithm for difficult full conditional dis-
tributions. The basic idea of Gibbs sampling is to
successively sample from the conditional distribution of
each random variable given all the others. Under weak
conditions this process eventually provides samples from
the joint posterior distribution of the unknown parameters
[Spiegelhalter et al., 2000]. Crainiceanu et al., 2002a,
provide a discussion of the application of WinBUGS to
hierarchical models of count data, and recommendations for
model formulation to improve numerical performance.

4. Bayesian Modeling of Pathogen Counts

[19] The basic data set for this analysis is the number of
pathogens counted by a laboratory in a sampled volume of
water. Therefore it is crucial to identify and understand the
processes that affect the number of pathogens counted. The
relatively simple process of counting microscopic patho-
gens is subject to complex influences, some quantifiable
and systematic, and some random.
[20] Consider a given water sample of volume V taken

from a natural water body at a given time. Assuming that
the pathogens are homogeneously distributed in water and
denoting by C the unobserved pathogen concentration, one
expects to have on average N = C � V pathogens in the
volume of water sampled. However, the counting process is
imperfect and subject to uncontrollable limitations in the
retention and identification of microorganisms. Therefore,
the expected number of pathogens actually counted is only a
fraction, R, of the total number N in the water. R is called the
recovery rate. Thus, the expected number of organisms
counted is R � V � C.
[21] While the outcome of the counting process is the

number of pathogens observed, the unobserved pathogen
concentration, C, is the quantity of concern for health risk
analysis and new water treatment regulations. A variety of
factors could have a causal relationship with pathogen
concentrations, such as water quality (turbidity, tempera-
ture), basin characteristics (land usage, standardized flow or
residence time, type of water body), seasonality, and spatial
and temporal correlations. One can link the concentration to
these factors using a standard linear regression model for
the logarithm of concentration with random effects to
account for correlations, as shown in section 4.1 below [see
also Best et al., 2002].
[22] Variations in the recovery rate, or the probability of

identifying and counting one microscopic pathogen in
water, introduces additional complexity. For example, a
zero or other low count can be due either to a low pathogen
concentration, or to a low laboratory recovery rate, or both.
Because of this inherent duality in the interpretation of lab
results, additional data is needed to understand the proper-
ties of recovery rates. The EPA addressed this issue with a

‘‘spiking survey’’ wherein laboratories were given samples
of water containing a known, but undisclosed, number of
oocysts. The ratio of the observed counts to the exact counts
is an estimator of the recovery rate. Section 4.2 develops a
model for recovery rates incorporating water quality cova-
riates and laboratory random effects.

4.1. Bayesian Model Formulation

[23] This section considers the following model of path-
ogen counts:

Yijjlij � POISSON lij

� �
lij ¼ Vij Rij Cij

log Cij

� �
¼ X 0

ijbþ tij

tijjsi; st � N si; s2t
� �

sijrk ið Þ; ss � N rk ið Þ; s2s
� �

rk jm; sr � N m; s2r
� �

ð5Þ

[24] Here Yij is the observed pathogen count for site i and
month j. Conditional on their mean lij, the pathogen counts
Yij have Poisson distributions. The mean of the distribution
of the observed pathogen count lij is the product of the
volume of water analyzed Vij, the true concentration of
microorganisms Cij, and the recovery rate probability Rij. A
model of Rij is developed in section 4.2.
[25] The site number i runs from 1 to M, where M is the

number of sites considered. The month index j runs from
1 to Ni, where Ni is the number of observations for site i. In
general Ni = 18, but there are sites with Ni < 18 due to
missing observations. Site i with mean si belongs to
geographic region k(i) whose mean is rk. In a few cases 2
or 3 sampling points (locations from which utilities drew
water) were actually the same water source; these records
were combined into a single super-site with up to
54 observations [see Behr, 2001, pp. 15–18]. As a result,
the number of stream sites was reduced from 111 to 87,
while the number of reservoir-lake sites was reduced from
185 to 147. This was important because the Weber River in
Utah appeared to be unusual in that region as well as
nationally, and records for 3 Weber-River withdrawal points
were combined into one super-site.
[26] The third relationship in the model links variability

in the pathogen concentrations Cij to available covariates Xij

and a random error component. This relationship is
approximated by the log linear model

log Cij

� �
¼ X 0

ijbþ tij: ð6Þ

A basic assumption in (6) is that the pathogen concentra-
tion in natural waters can be very small but never exactly
zero. The log transformation converts the concentration
Cij > 0 to log(Cij), which is unbounded both above and
below, and thus is consistent with a standard linear
regression analysis with normal errors. Each entry of the
vector Xij represents a covariate which may be a nonlinear
function of an observed and measured quantity. Possible
covariates include turbidity, temperature, streamflow, resi-
dence time, source water type and seasonal spline functions
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(see Appendix A). The vector b contains the regression
model parameters.
[27] Conditional on their means, the random time-site

effects tij, site effects si and regional effects rk are
independent and normally distributed. This is an assumption
about their prior distribution. Although independence and
normality may not be an entirely satisfactory assumption,
there was little prior information to enable us to form an
alternative formulation. The estimates of these effects
should depend mostly on the data and little on the prior
assumptions. The time-site effects capture longitudinal
within-site variation, the site effects represent between-site
variation in the site means within geographic regions, and
the regional effects capture variation between the EPA
regions within the United States. These effects are an
important aspect of the model because they jointly capture
the stochastic variation in concentrations over time at a
single site, the unique character of each site within a region,
and also allow for regional differences. The resulting spatial
correlation structure along with Rij describe the observed
overdispersion in the actual counts.
[28] The spatial and temporal stochastic dependence of

the data is modeled by a hierarchy of normal random
effects. As formulated in equation (5), the time-site random
effects tij are centered on the random site effects si, the si are
centered on the regional random effects rk(i), and the rk are
centered on the national mean m. This model formulation
significantly improves the performance of the MCMC
simulation which was an important consideration
[Crainiceanu et al., 2002a]. Covariates were centered by
subtracting their sample mean and standardized by dividing
by their sample standard deviation. Centering covariates is
widely used in statistical computation to make them
orthogonal to the intercept and thus improve MCMC mixing
properties [Crainiceanu et al., 2002a, Spiegelhalteret al.,
2000]. Standardizing covariates alsomakes them unitless and
allows direct comparison of their effects on concentration.
[29] Messner and Wolpert [2002] consider a set of models

similar to that in equation (6), with site effects but no
regional effects, a single continuous covariate representing
turbidity, and an index variable for each of the twelve
months. In addition, they used a beta distribution to describe
independent identically distributed recovery rates, whereas
our analysis employs a logit-normal recovery rate distribu-
tion that includes a statistically significant covariate
corresponding to the volume of the sample analyzed. Their
analysis of the basic ICR data set and supplemental survey
for both Cryptosporidium and Giardia serves as the basis of
the proposed EPA regulations on water treatment [U.S. EPA,
2001]. Their analysis focuses on the median, 5th and 95th
percentiles of the national distribution of site means. This
paper focuses on the performance of the basic model,
selection of a recovery rate model and of covariates, and the
role of observations, site means, and regional effects.

4.2. Recovery Rates

[30] For a given laboratory, the random recovery rate R is
the probability that a lab technician observes and counts a
pathogen included in the sample. The precision of
laboratory recovery rates for Cryptosporidium has long
been of concern [Gimbel and Nahrstedt, 1996; Walker,
1999, chap. 18; Bukhari et al., 1999; Young and Komisar,
1999; Connell et al., 2000]. Because the mean recovery rate

for Cryptosporidium parvum is approximately 11%
[Messner, 2000], failure to include recovery in the model
would result in severe underestimation of concentrations Cij

and exaggeration of their variability [Stedinger and
MacKay, 1998]. The pathogen counts have two main
sources of overdispersion: variation in true concentrations
and potential variation in laboratory recovery rates. These
sources should be distinguished because they have different
implications for risk management.
[31] The EPA conducted a lab-spiking study to determine

the distribution of recovery rates R for the ICR analysis
[Scheller et al., 2002]. Messner [2000] reports that: ‘‘The
ICR Laboratory Spiking Study was designed to assess the
ICR Method’s performance when testing actual drinking
water sources. For this purpose, a subset of ICR utilities
(70) collected 100 L volumes of their source waters on two
separate occasions concurrent with ICR sample collection.
The 100 L samples were shipped to a central lab, spiked
with a known number of Cryptosporidium and Giardia
organisms, filtered according to the ICR Method, and (the
filters) shipped to the utilities’ selected analytical labora-
tories.’’ For every experiment, collected data included the
volume of water filtered (which is in general different from
100 L), number of organisms added to this volume of water
(for Cryptosporidium and Giardia), standard deviation of
the number of organisms spiked (variation is due to the
technique used: hemacytometer enumeration), number of
organisms actually counted by the laboratories, volume of
water analyzed by the laboratories (which is typically
smaller than the volume of water filtered), and three
variables (turbidity, temperature and pH) measured at the
time of filtration, and laboratory identification number. A
total of 21 laboratories participated in the study.
4.2.1. Recovery Rates Model
[32] There are many imprecisely controlled processes in

the ICR method that could be responsible for variability.
Some organisms could pass through or be trapped in the
filter; others could be lost during the flotation or staining
procedure, or are hidden by other particles in the water
[Young and Komisar, 1999]. Even for a given probability of
counting an organism (recovery rate), the number of oocysts
counted by the laboratory is still random. The water spiking
process with a large and nondeterministic number of
pathogens is another source of variability. Let j be the j-th
experiment at laboratory i, Nij be the number of oocysts
spiked in the total volume of water Tij, and Zij be the
observed count. Therefore, the true concentration in the
spiked sample is Nij/Tij. Because E[Nij] is generally in
the thousands, a continuous Gamma distribution is more
than satisfactory for modeling the count Nij. Consider the
following model:

Nijjaij; bij � GAMMA aij; bij
� �

Zij � POISSON qij
� �

qij ¼ VijNijRij=Tij

logit Rij

� �
¼ W 0

ijbW þ uij

uijjLi; su � N Li; s2u
� �

Lijd; sL � N d; s2L
� �

ð7Þ
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Given the nature of the spiking step, which involves an
imperfect counting process of very small organisms, the
exact number Nij is unknown. We account for its variability
by assuming that the true number of oocysts in the spike has
a Gamma distribution. For the ICR spiking Cryptosporidium
data, the reported coefficient of variation (CV) of the Nij

distributions is between 9.7% and 29.9% with an average
CV of 15.9%. The lab-spiking data provides the expected
value, E[Nij], and variance, Var[Nij] of the number of
organisms spiked. One important assumption is that this
process is unbiased. The parameters aij and bij of the gamma
distribution are chosen so that its mean and variance match
E[Nij] and Var[Nij] respectively:

E Nij

� �
¼ aij=bij

Var Nij

� �
¼ aij=b

2
ij

ð8Þ

Conditional on the true concentration Nij/Tij, the expected
number of oocysts in the volume analyzed Vij is VijNij/Tij.
However, because of lack of accuracy in the laboratory
counting process, the expected number of oocysts is smaller;
the correction factor Rij is the recovery rate. Conditional on
the recovery rate and on the true concentration in the volume
of water analyzed, the number of oocysts actually counted
has a Poisson distribution with mean qij = VijNijRij/Tij.
[33] The third relationship in the model links the vari-

ability in the recovery rate to the value of available
covariates and a random error component. This relationship
is described by the logit model

log Rij= 1	 Rij

� �� �
¼ W 0

ijbW þ uij; ð9Þ

where W 0
ijbW is a linear combination of the covariates using

parameters bW, and the uij are conditionally independent
random errors with mean Li representing the laboratory
effect. Laboratory effects have normal distributions about
the overall mean for the model d with variance s2L. The role
of the logit transformation is to convert the recovery rate
0 < R < 1 into a variable that is unbounded both above and
below, and thus is consistent with a linear model including
normally distributed within-lab variation and laboratory
effects. In the statistics literature model (7) would be
referred to as a Generalized Linear Mixed Model, because
uij and Li are random. Appendix B discusses alternative
recovery rate models.
4.2.2. Recovery Rate Inference
[34] Of interest is whether a statistical analysis will find

any significant covariates or laboratory effects when the
observed counts were small, and the magnitude of the initial
spike included uncertainty.
[35] The initial data set included 140 observations for the

recovery rate of Cryptosporidium parvum and Giardia
lamblia. Because for one observation no covariates were
measured, and for two other observations temperature was
not recorded, we discarded those three observations. For
models that do not include covariates, results for the entire
data set (containing 140 observations) were almost identical
to results for the reduced data (containing 137 observa-
tions). Because some very large values of turbidity were
observed (e.g., 1200 ntu and 394 ntu, when the other
observations had mean turbidity 9.58 ntu with standard
deviation 17.04 ntu), all turbidity values above a threshold
of 30 ntu were set equal to that threshold, while values

below were left unchanged. This transformation affected
about 10% of the observations, and results were not
sensitive to the selected bound.
[36] Table 1 reports the posterior means and standard

deviations for the parameters of four recovery rate models.
Analyses employed WinBUGS 1.3 with diffuse proper
priors for all hyperparameters. The first two columns
correspond to two versions of the model in equation (7)
applied to Cryptosporidium data. The first column provides
results for a model including all available covariates and
laboratory random effects. For Cryptosporidium, the
logarithm of the volume of water analyzed (log-V) is
statistically significant (the 95% credible interval of its
parameter does not contain zero). Turbidity, temperature,
pH, log of the number of oocysts spiked (log-N) were not
statistically significant.
[37] To examine the importance of laboratory effects in

explaining the variability in the data we computed the
posterior distribution of

RS ¼ s2L
s2L þ s2u

:

The RS statistic is inspired from the standard linear
regression and represents the fraction of the total variance
explained by the random laboratory effects. For Crypto-
sporidium RS is smaller than 0.1 with 0.95 probability and
smaller than 0.14 with 0.975 probability, showing that
laboratory random effects explain only a very small fraction
of the variation in the Cryptosporidium data.
[38] The second column provides results for a Crypto-

sporidium recovery rate model that only includes log-V as a
covariate and does not contain laboratory random effects.
The log-V parameter does not change and remains
significant. This second recovery rate model will be used
in the complete analysis of Cryptosporidium concentrations.
[39] Simple, nonparametric estimates of the recovery

rates can be obtained by ignoring the Poisson variability
in model (7) which gives the ‘‘empirical recovery rates’’

R̂ij ¼
ZijTij

NijVij

:

Figure 2 displays these values for Cryptosporidium relative
to the log of the volume analyzed. The bRij are larger

Table 1. Results of Bayesian Analysis for the Recovery Rate

Models of Cryptosporidium: Posterior Means and Standard Errora

Parameters

Cryptosporidium Giardia

Full Reduced Full Reduced

Overall mean 	2.47 (0.12) 	2.39 (0.10) 	1.20 (0.22) 	1.19 (0.21)
Turbidity 0.13 (0.12) 	0.15 (0.11)
Temperature 0.20 (0.11) 0.04 (0.10)
pH 0.05 (0.09) 0.03 (0.08)
log-V 	0.43b (0.13) 	0.42b (0.10) 	0.35c (0.17) 	0.35b (0.12)
Log-N 0.09 (0.11) 	0.08 (0.09)
su 1.10 (0.09) 1.10 (0.09) 1.00 (0.09) 0.98 (0.08)
sL 0.12 (0.09) 0.69 (0.24) 0.70 (0.27)
RS 0.02 (0.03) 0.32 (0.15) 0.33 (0.16)

aStandard errors are given in parentheses.
bPosterior symmetric 95% credible interval of the fixed effect does not

contain 0.
cPosterior symmetric 90% credible interval of the fixed effect does not

contain 0.
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for smaller values of the log-V, which is consistent with our
model-based findings for the recovery rates. The advantage
of model (7) is that it quantifies this relationship.
[40] Messner [2000] analyzed the same data set to derive

the MLEs and the posterior distribution of the parameters of
a Beta distribution for Rij using a Poisson model for the
observed counts, but neglecting any covariates or laboratory
effects. Walker [1999] employed the empirical recovery
rates in a GLM Gamma regression analysis thus neglecting
the sampling variability both in Zij and Nij. See equation
(B2). This seems inappropriate because several Zij were
zero, as shown in Figure 2.
[41] The median of Rij can be obtained by replacing uij by

its median d in equation (9). The solid line and the dotted
lines in Figure 2 represent the posterior 5th, 50th, and 95th
percentiles of the true median recovery rate. The dashed
lines in Figure 2 represent the posterior 5th and 95th
percentiles of the posterior distribution of possible recovery
rates.
[42] The negative effect of log-V on Cryptosporidium

recovery rates (	0.42) is shown by the decreasing median
recovery rate in Figure 2. The recovery rate credible
intervals are wider than the credible intervals for the median
recovery rate due to the additional variability represented by
the random effects uij around d. The recovery rate credible
intervals do not contain exactly 90% of the empirical
recovery rates since, because of variability of the counts, the
empirical rates are more variable than the actual rates.
[43] The last two columns of Table 1 present results for

Giardia recovery rates. The overall mean on the log-scale
increases from 	2.47 for Cryptosporidium to 	1.20 for

Giardia showing larger recovery rates. This may be due to
the larger size of the Giardia cysts relative to the
Cryptosporidium oocysts, which makes them easier to
retain and identify. As with Cryptosporidium the only
covariate that has a sizable effect on recovery rates is log-V
(	0.35). However, the fraction of the total variance
explained by the random laboratory effects (RS) is much
larger (0.32 for Giardia relative to 0.02 for Crypto-
sporidium) showing that for Giardia there are sizable
differences in recovery rates among the 21 laboratories. The
last column presents results for the simple model of recovery
rates for Giardia with all nonsignificant covariates omitted.
[44] The physical relationship that causes recovery rate to

drop with the volume of water analyzed is not clear. It could
be related to the suspended solids in the water that results in
the reduction in the volume of water run through the filter
before clogging, and the collected solids from which a
sample was taken for inspection. One needs to be careful
using volume analyzed as a recovery rate covariate because
this value could be manipulated by utilities and laboratories,
and the derived relationship pertains to the historical sam-
pling and laboratory procedures. Bias would be introduced
into the analysis if utilities or laboratories change their
procedures and sampling rules, and thus the relationship
between real recovery rates and the volume analyzed.

5. Cryptosporidium Concentration Results

[45] If one is interested in real-time prediction of pathogen
concentrations for day-to-day water supply management, it
is reasonable to use all available covariates. Such a model

Figure 2. Stars are empirical recovery rates; solid line is median recovery rate; dotted line is 90%
credible interval on the median recovery rate; short-dashed line is 90% credible interval for the unknown
true recovery rate.
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could be used to quickly determine periods with a risk of
higher pathogen concentrations so that utilities could take
appropriate actions (e.g., intensify water quality monitoring,
increase levels of water treatment or switch water sources).
[46] For health risk analysis associated with long-term

exposure, one is interested in the annual average concen-
tration at a given site and its predictive distribution for
decision-making [US EPA, 2001]. Because future values of
some covariates are not known, they are not useful for long-
term risk analysis, though their site-specific historical
averages could be used. For risk analysis we want to retain
in the model all covariates that are available for long term
prediction. Therefore, we divide the covariates into two
categories.
[47] A first category includes time-site specific covariates

(turbidity, temperature, water-flow, etc.), whose future val-
ues are not known at present. The second category includes
perfectly predictable covariates (type of water source,
seasonal effects, basin characteristics, etc.). Their exact
values are known at present for every site and future period.
Moreover, if there is a missing observation for a given
month, then the time-site specific covariates (e.g., turbidity)
are unavailable whereas the perfectly predictable covariates
are known, whether or not a sample was taken for site i in
month j. Grouping covariates into these two distinct
categories results in two sets of models, one for water
quality prediction using all covariates, and one for risk
analysis using only perfectly predictable covariates.Messner
and Wolpert [2002] took another approach which was to fit
lognormal distributions to the sets of at-site averages
computed at each MCMC iteration. The median of those
distributions then represented their median national dis-
tribution for at-site Cryptosporidium means, including
parameter uncertainty. The 5th and 95th percentiles were
also computed.
[48] Model (5) can be applied to different pathogen data

sets, including the entire ICR data or subsets that exhibit
special characteristics not found in the rest of the data. The
ICR data set was partitioned according to the water source

type (streams versus reservoirs and lakes), because stream
water sources are likely to exhibit higher Cryptosporidium
concentrations and different causal relationships between
oocyst counts and covariates. Moreover, some covariates
such as residence time and flow rate are defined for one
water source but not the other.
[49] Table 2 provides posterior means and standard devia-

tions for a representative set of parameters for eight
selected models for Cryptosporidium based upon 1444
observations for streams and 1771 observations for
reservoirs/lakes. Results were obtained using 4000 burn-in
simulations (not used for inference) and 20,000 simulations
from the target distribution (used for inference). As
convergence diagnostics we used multiple chains with
different initial starting points for parameters and visual
inspection of the chains corresponding to parameters of
interest.
[50] Each column corresponds to one particular case of

the model described in equation (5). The first column
(S-NOV) corresponds to results for model (5) applied to
stream data incorporating many available covariates and
using a recovery rate model that does not include log-
volume analyzed as a covariate. Model S-V includes the
log-volume analyzed as an explanatory variable for recov-
ery rates, but not laboratory effects and nonsignificant
covariates (temperature, pH, log-number of oocysts spiked).
This refinement of the recovery rate model has a large
impact on the effect of turbidity on concentrations. While
statistically significant in both models, its effect is reduced
from 0.87 for S-NOV to 0.67 for S-V, or almost 25%. A
similar impact can be observed for pH, but the value of pH
in both models is very modest.
[51] Complex models such as S-NOV and S-V, that

include a large number of covariates, can be used in a first
phase of statistical modeling to identify those variables that
affect pathogen concentrations. However, in our models
many covariates were not statistically significant and could
be discarded from the analysis to help focus the analysis on
covariates that are important. The third column (S-V-S) of

Table 2. Posterior Means and Posterior Standard Deviations of Parameters for Eight Cryptosporidium Modelsa

Parameters

Models

S-NOV S-V S-V-S S-HR R-NOV R-V R-V-S R-HR

Overall mean 	1.93 (0.42) 	1.83 (0.46) 	1.69 (0.46) 	1.63 (0.47) 	4.97 (0.59) 	4.27 (0.58) 	4.01 (0.56) 	4.19 (0.56)
Turbidity 0.87b (0.16) 0.67b (0.14) 0.55b (0.15) 0.54b (0.22) 0.53b (0.20) 0.54b (0.19)
Temperature 	0.30 (0.23) 	0.29 (0.21) 	0.32 (0.32) 	0.38 (0.32)
T-coli 	0.41c (0.29) 	0.42c (0.29) 0.12 (0.17) 0.08 (0.16)
Season 1 0.08 (0.13) 0.06 (0.12) 0.05 (0.12) 	0.02 (0.12) 	0.08 (0.24) 	0.08 (0.20)
Season 2 	0.36c (0.19) 	0.33c (0.18) 	0.16 (0.11) 	0.29c (0.10) 	0.21 (0.26) 	0.22 (0.24)
Season 3 	0.20 (0.17) 	0.20 (0.16) 	0.04 (0.12) 	0.03 (0.12) 	0.16 (0.25) 	0.17 (0.23)
pH 0.37c (0.19) 0.27 (0.17) 	0.20 (0.29) 	0.24 (0.27)
Log-pop. 	0.22 (0.27) 	0.29 (0.26) 0.32 (0.28) 0.31 (0.25)
Resid. time 	0.35 (0.28) 	0.34 (0.25)
Export-L 	0.49c (0.28) 	0.49c (0.26) 	0.19 (0.28) 	0.21 (0.27)
st 1.11 (0.16) 1.02 (0.16) 0.99 (0.17) 1.03 (0.16) 1.67 (0.31) 1.32 (0.30) 1.27 (0.30) 1.46 (0.29)
ss 1.58 (0.23) 1.37 (0.22) 1.34 (0.22) 1.36 (0.23) 1.62 (0.37) 1.46 (0.30) 1.32 (0.28) 1.41 (0.29)
sr 0.73 (0.51) 0.99 (0.48) 1.02 (0.45) 1.06 (0.49) 0.90 (0.61) 0.90 (0.56) 0.90 (0.47) 0.72 (0.48)

aPosterior standard deviations are given in parentheses. S-NOV: stream data, recovery rate that does not incorporate log-volume analyzed. S-V: stream
data, recovery rate incorporating log-volume analyzed. S-V-S: stream data, recovery rate incorporating log-volume analyzed, statistically significant
covariates only. S-HR: stream data, recovery rate incorporating log-volume analyzed, health risk model. R-NOV: reservoir data, recovery rate that does not
incorporate log-volume analyzed. R-V: reservoir data, recovery rate incorporating log-volume analyzed. R-V-S: reservoir data, recovery rate incorporating
log-volume analyzed, statistically significant covariates only. R-HR: reservoir data, recovery rate incorporating log-volume analyzed, health risk model.

bThe 95% equal tail probability credible interval does not contain 0.
cThe 90% equal tail probability credible interval does not contain 0.
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Table 2 corresponds to a simpler case of model S-V from
which most covariates with small effects were discarded.
The S-V-S model retains only turbidity and seasonal func-
tions as explanatory variables for Cryptosporidium concen-
trations. The effect of turbidity is further reduced to 0.55 but
remains significant, while none of the the seasonal functions
is statistically significant.
[52] To obtain a model for health risk analysis it is easiest

to use only perfectly predictable covariates. An example of
risk analysis model for streams is presented in the fourth
column (S-HR) and is obtained by dropping turbidity from
model S-V-S. One can see that the seasonal splines de-
scribed in Appendix A become statistically significant, most
probably by capturing the seasonal effects previously
captured by turbidity.
[53] Reservoir/Lakes results for four models are pre-

sented in the last 4 columns of Table 2. Notation is the
same as for streams models. The only significant covariate
in the first 3 models (R-NOV, R-V, R-V-S) is turbidity
whose effect (0.53) is practically unchanged by the various
transformations of the model. Using a more refined model
for recovery rates reduces the posterior means of the
standard deviations for time-site effects st (from 1.67 in
R-NOV to 1.32 in R-V, or 21%) and for site effects ss (from
1.62 in R-NOV to 1.46 in R-V, or 10%) but left it
unchanged for region effects (0.90). Eliminating the noise
contained in the nonsignificant covariates further reduces st.
For the health risk model R-HR the inability to use the time-
site specific turbidity, which was statistically significant in
the other models, moderately inflates st and ss, and
decreases sr . As with the stream models, sr is the most
uncertain of the variance components; this should not be a
surprise because there are only 10 regions whereas there are
84 stream sites and 114 reservoir/lakes sites, most of which
have 18 monthly observations which help determine st, the
most precisely determined variance component in the
stream models. For reservoir-lakes st and ss had the same
precision most likely because so many counts were zero.
[54] The mean count for streams is much larger than for

reservoirs (0.48 compared to 0.08) and the same is true for
the percentage of nonzero counts (13.1% compared to
4.2%). Because the covariates are mean-centered, differ-
ences between reservoir and stream concentrations are
captured by the differences in the overall mean on the
natural log-scale (m = 	1.83 for S-V versus m = 	4.27
for R-V). This difference between Cryptosporidium con-
centrations in streams and reservoirs is very large compared
to all other covariate effects and is by far the most important
effect identified in the ICR Cryptosporidium data.
[55] Of interest is the importance of the hierarchical

structure accounting for time-site, site and regional effects.
The importance of each is reflected in the variance compo-
nents st

2, ss
2 and sr

2. For stream models, the largest
variance component is the site effect, followed closely by
the time-site and regional effect. Of the total variation in
concentrations explained by the site mean, roughly 30%
[sr

2/(sr
2 + ss

2) � 100%] of that variation could be explained
by region, both for streams and reservoirs. This illustrates
the importance of including regions in the model to
correctly represent the stochastic dependence among
observations, as well as the potential value of knowing a
region upon estimation of site means.

[56] Table 3 consists of posterior means and standard
deviations for several models of Cryptosporidium at
reservoir sites only. The models have been adapted from
earlier analyses in which a smaller sample of the ICR
data set is explored (1469 observations) to accommodate
a larger set of covariates [Behr, 2001]. The basic structure
of the models is given in equation (5), where again log-
volume is included in the model for recovery rates. The
results indicate that turbidity, carbonate hardness, and
total organic carbon are all significant. The regional
variance component sr

2 is now larger than the site effect
variance ss2. The decrease in st from 1.52 to 1.33 is
difficult to interpret because the overall mean increases at
the same time from 	4.32 to 	3.96; the probability of a
nonzero count depends upon the joint distribution of both
parameters.

6. Model-Based Prediction of Pathogen
Distributions

[57] Our hierarchical Bayesian models are of necessity
complex because the data’s structure is complex. A major
attraction of the model is that the complexity is built by
exploiting relatively simple conditional relationships, so
that the model is reasonably easy to understand. To
further understand the model, we now study how it
predicts under different sets of available information. We
will use prediction intervals to illustrate the following
points: (1) Prediction intervals for log concentrations
become narrower when there is more information available
on actual count, site, or region. (2) The location and width of

Table 3. Posterior Means and Posterior Standard Deviations of

Parameters for Four Models of Cryptosporidium Concentrations in

Reservoirs

Parameters

Models

Full Model 1 Model 2 Model 3

Overall mean 	4.32 (0.75) 	4.00 (0.69) 	3.96 (0.61) 	3.92 (0.58)
Turbidity 0.53b (0.23) 0.49b (0.20) 0.46b (0.20) 0.45b (0.19)
Carbonate hard. 0.63b (0.23) 0.62b (0.22) 0.58b (0.22) 0.62b (0.21)
Total organic

carbon
0.33b(0.15) 0.35b(0.13) 0.36b (0.13) 0.38b (0.13)

Log-Urban land
area

	0.26 (0.28) 	0.21 (0.25) 	0.16 (0.21)

Log-residence
time

	0.12 (0.27) 	0.13 (0.24) 	0.15 (0.25)

Sediment export 	0.15 (0.22) 	0.12 (0.20)
Export-L 	0.18 (0.29) 	0.19 (0.27)
Temperature 0.19 (0.18)
Season 1 	0.05 (0.23)
Season 2 	0.09 (0.19)
Season 3 	0.09 (0.22)
Log-population 0.06 (0.24)
Soil permeability 0.02 (0.21)
st 1.52 (0.41) 1.35 (0.40) 1.33 (0.33) 1.38 (0.32)
ss 0.92 (0.43) 0.81 (0.39) 0.91 (0.37) 0.78 (0.36)
sr 1.15 (0.56) 1.05 (0.48) 1.01 (0.51) 1.06 (0.49)

aPosterior standard deviations are given in parentheses. Different models
are obtained from the full model by dropping covariates that are not
statistically significant. A smaller subset than the one used for results in
Table 2, because fewer covariates were available.

bPosterior symmetric 95% credible interval of the fixed effect does not
contain 0.
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prediction intervals are affected by covariates, if they are
available and included in the model. (3) When predicting
concentrations rather than log concentrations, heteroscedas-
ticity is severe and prediction intervals are considerably
wider when the medians of the predicted values are larger.
(4) The heteroscedasticity effect can dominate the effect of
increased information: observing a high count, rather than
having no observation, increases the prediction interval’s

width despite the additional information the observation
provides.
[58] The information displayed in Figures 3 and 4 was

produced by the MCMC algorithm as it samples the
posterior distribution. At each step in the Markov chain,
the algorithm generates a sample from the posterior of
possible values for all parameters and random effects. These
provide the corresponding concentration for a given site and

Figure 3. Posterior 5th, 50th, and 95th percentiles of Cryptosporidium concentrations using model
R-HR, conditional upon observations at sites 29 and 104, with different amounts of information, as
explained in the text. Figure 3a has log-scale vertical axis, and Figure 3b has linear vertical axis.
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time. That Cryptosporidium concentration distribution is
labeled ‘‘E.’’ The posterior E distribution depends upon the
count observed at the time and site where concentration is
being predicted. Figures 3 and 4 report the 5th, 50th and
95th percentiles of the generated distribution.
[59] The ‘‘S’’ distribution corresponds to same site and

month as ‘‘E’’ (with the same covariates) but at a time

with no observed count. To get this distribution, at each
step of the chain, a tij is generated from its prior
distribution N(si, st

2) to compute a value of the environ-
mental concentrations for Cryptosporidium. The ‘‘S’’
distribution is the prediction of the Cryptosporidium
concentration distribution at this site, without a concurrent
observation.

Figure 4. Posterior 5th, 50th, and 95th percentiles of Cryptosporidium concentrations using model S-V.
Figure 4a has log-scale vertical axis, and Figure 4b has linear vertical axis.
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[60] The ‘‘R’’ distribution uses random unconditional
values of the time-site effect tij and the site effect si for a
selected region. The ‘‘R’’ predictive distribution describes a
site without count data so that the only information for
predicting concentrations is knowledge of the region and
covariates.
[61] Finally, the ‘‘O’’ distribution corresponds to the

Cryptosporidium concentrations likely to be observed in a
randomly selected region, at a randomly selected site, on the
specified date of sampling, without using sample informa-
tion for that site. The quantiles in Figures 3 and 4 reflect
variability in the time-site effects, the site, the regional
effects, and also the uncertainty in the regression coeffi-
cients b and the variance components of the model: st

2, ss
2,

and sr
2.

[62] The difference between the two graphs in Figure 3 is
that Figure 3a uses a log-scale vertical axis while Figure 3b
uses a linear scale. Thus Figure 3a shows the effects of
information on log-concentrations equal to X 0

ijb + tij,
whereas Figure 3b shows the effects on the corresponding
real concentrations Cij = exp(X 0

ijb + tij).
[63] The left-hand side of Figure 3a shows the impact of

observing a count of 7, of 2 or of 0 at site 29 in the EPA
region 3. The count of 7 results in a posterior distribution
represented by ‘‘E’’ that is larger than with a count of 2, and
much larger than with a 0 count. However, an observation
does not eliminate all uncertainty because of variation in the
recovery rates and because the observed Poisson count does
not determine the actual concentration.
[64] Similar patterns can be observed among the ‘‘S’’

distributions. Because 5th to 95th percentile ranges for ‘‘S’’
are smaller than for ‘‘R’’ and ‘‘O,’’ the log-concentration
distribution is tighter when the site is known than when
only the region is known, or when the region is selected at
random. The same holds when ‘‘R’’ is compared with ‘‘O’’,
because that knowledge of the region reduces the uncer-
tainty in the Cryptosporidium concentration, though the
difference is relatively modest because the regional effect
was not very large.
[65] These effects look very different in Figure 3b, where

the intervals for ‘‘E’’ are wider than those for ‘‘S’’, ‘‘R’’,
and ‘‘O’’ for counts of 7 and 2, but smaller when the count
was zero. The uncertainty seen in Figure 3b is mostly driven
by heteroscedasticity rather than the relative precision of the
predictive distribution, as demonstrated by Figure 3a. Be-
cause the R-HR model has no covariates, under ‘‘S,’’ ‘‘R,’’
and ‘‘O’’ the 5th to 95th percentiles are the same for all
time-site pairs.
[66] Figure 4 displays results for the stream model

including all covariates (S-V). Estimates of concentrations
correspond to two counts, 4 and 0, at site 19 which is in
region 3 and three counts, 35, 2, and 0, at site 71 which is
in region 8. The basic patterns are the same as in Figure 3
with one important difference: the ‘‘S’’, ‘‘R’’, and ‘‘O’’
estimates are not the same within a site because the
covariates have different values which depend on the time
of sampling.

7. Conclusions

[67] In natural waters, pathogen concentrations vary over
time and space. This paper develops models that describe
such variation as functions of water quality and hydrologic

covariates, as well as time, site and regional random
effects. Modeling the variation of pathogen concentration
using observed count data is a significant challenge,
especially in the ICR study where over 90% of the
observed counts are zero, and at some sites all counts were
zero; the large variation in laboratory recovery rates further
complicates the analysis [Messner and Wolpert, 2002].
From the ICR spiking study we found that volume-analyzed
did help explain Cryptosporidium and Giardia recovery
rates, and for Giardia there were significant laboratory
effects. Including volume-analyzed in the recovery rate
model caused a large reduction in the coefficients for
turbidity and pH in the Cryptosporidium stream model, but
not in the reservoir-lake model. Despite the large percent of
zeros, the analysis demonstrated that Cryptosporidium
concentrations were on average larger in streams than in
reservoirs and lakes, several covariates were statistically
significant, and there were important differences among
regions.
[68] This paper develops a fully Bayesian modeling

framework for understanding the variation in environmental
pathogen concentrations across sites and across time. The
hierarchical model captures site and regional effects. The
statistical model is applicable even when the historical
pathogen counts are subject to sizable variation in recovery
rates and include many small counts, zero counts, and
missing data. The methodology is also applied to under-
stand laboratory recovery rates wherein one is concerned
with discrete counts whose mean is explained by covariates
including log-volume analyzed, and laboratory effects;
variation in the number of organisms added to the sample
was also a concern.
[69] Even though both models are relatively complex,

they were easily analyzed with WinBUGS, a standard
package for the numerical evaluation of the posterior
distribution of a Bayesian model using Markov Chain
Monte Carlo simulation. Overall this study shows that
hierarchical Bayesian models are an incredibly flexible
and numerically feasible general statistical methodology to
describe environmental concentrations of pathogen and
microbiological organisms.

Appendix A: Covariates for Cryptosporidium
Recovery Rate and Concentration Models

[70] Turbidity is a measure of cloudiness of water
measured at the time of sampling and it is expressed in
nephelometric turbidity units (ntu). Two different trans-
formations were employed for turbidity. For the lab-
spiking study all values larger than a given threshold

Table A1. Transformations of Covariates for Recovery Rates

Model

Covariates

Transformations

Log Threshold Centering Standardized

Turbidity no yes yes yes
Temperature no no yes yes
pH no no yes yes
Volume analyzed yes no yes yes
N-spiked yes no yes yes
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(30 ntu) were set equal to the threshold. For the ICR
study the turbidity was log-transformed. Temperature is
the temperature of the water at the time of sampling
expressed in degrees Celsius. T-coli is the total number of
Coliform bacteria found in the sampled water. pH is the
pH of water at the time of sampling. log-V is the
logarithm of the volume analyzed by the laboratory in
the lab-spiking study. The volume analyzed is only a
fraction of the total volume spiked with a known, but
undisclosed number of oocysts. log-N is the logarithm of
the number of oocysts spiked into the total volume of
water in the lab-spiking study. Population is the number
of people in the cities that use water from a given site.
Residence time of reservoirs or lakes is the average time
it takes for water to flow from an inlet to the outlet,
equal to the reservoir volume divided by the flow rate.
Export-L is the proportion of nitrogen export due to
livestock. Seasons are four spline functions designed to
capture the intraannual variations not captured by the
other covariates. We used four spline functions, one for
each season starting with summer. The coefficient of one
of the spline functions (end of spring beginning of
summer) was set to zero to avoid linear dependencies.
Like all other covariates, the seasonal spline functions
were centered and standardized.
[71] All models were fit with complete data sets, that is

each observation included all covariates. Several transfor-
mations of covariates from the original ICR data aimed at
reducing the impact of outliers and improving numerical
stability. Tables A1 and A2 provide a summary of those
transformations. The log-transformation was applied before
centering and standardization.

Appendix B: Recovery Rate Models

[72] The models in equations (B1) and (B2) below, were
also considered for modeling the pathogen recovery rates.
These models provided a statistical interpretation of the
data that is consistent with that obtained using the basicmodel
(7), both for Cryptosporidium and Giardia [Crainiceanu et
al., 2002b].
[73] The model in equation (B1) is similar to the model (7)

with the important difference that the recovery rates Rij are
assumed to follow a Beta distribution with mean mij and
variance mij(1 	 mij)/(y + 1). Here y is considered constant
across all Beta distributions, with a small y being indicative
of highly variable recovery rates. For the model in (B1), the
logit of the mean recovery rate, and not of the recovery rate
itself, is assumed to follow a linear mixed model with

exchangeable random effects. The variability in the
recovery rates in model (B1) is described by the Beta
distribution, whereas the random effects tij described that
variability in model (7).

Nijjaij; bij � GAMMA aij; bij
� �

Zij � POISSON qij
� �

qij ¼ VijNijRij=Tij

Rij � BETA ymij;y 1	 mij

� �� �
logit mij

� �
¼ W 0

ijbW þ Li

Lijd; sL � N d; s2L
� �

ðB1Þ

[74] Yet a third model is described in equation (B2). The
important difference from the basic model in (7) is in the
model of recovery rates. Here log(	log(1 	 Rij)) is modeled
as a linear mixed model with random lab-time effects
log(gij), where gij are assumed to have a Gamma
distribution. This model was considered because the
Gamma distribution in model (B2) is more flexible at zero
than the lognormal distribution in equation (7), especially
for small recovery rates.

Nijjaij; bij � GAMMA aij; bij
� �

Zij � POISSON qij
� �

qij ¼ VijNijRij=Tij

log 	 log 1	 Rij

� �� �
¼ W 0

ijbW þ Li þ log gij
� �

gij � GAMMA c; cð Þ

Lijd; sL � N d; s2L
� �

ðB2Þ

This is a generalization of the model developed by Walker
[1999], who neglected variability in Nij and Zij, and did not
include laboratory effects.
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