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Abstract 1 

Because accessibility is a critical factor in determining land use, land use models 2 
have long been integrated with travel demand models.  As travel modeling moves 3 
from the traditional four-step approach toward advanced modeling techniques, 4 
including microsimulation, integrated land use-transportation models are 5 
expected to evolve as well.  This paper describes a first-of-its-kind attempt at 6 
integrating a dynamic, second-by-second traffic router/micro-simulator with a 7 
highly disaggregated and dynamic land use model.  The traffic microsimulator 8 
captures the emergence of congestion and its impact on traffic flow, rather than 9 
looking solely at the ratio of traffic volume to capacity as the traditional four-10 
step models do.  In comparing the land use outputs of a model system that 11 
includes the micro-simulator with the results from the system without micro-12 
simulation for our study area of Chittenden County, Vermont, statistical tests 13 
found only slight differences in the land use predictions between the two model 14 
integrations for a 40-year simulation. Although these differences were slight, 15 
their spatial patterns shed light on how transportation models influence the 16 
outcome of land use models. In particular, differences in land use predictions 17 
appear to relate to the traffic micro-simulator’s predictions of emergent traffic 18 
bottlenecks along routes that serve peripheral areas where there is poor 19 
redundancy in route choice. These results suggest that land use models are at 20 
least somewhat sensitive to the type of transportation model that is used to 21 
generate accessibility measures. Our study site is a small metropolitan area with 22 
only modest population pressures and limited traffic congestion. Differences in 23 
predictions between model integrations grow as population forecasts are 24 
artificially increased, suggesting that integration of traffic micro-simulation may 25 
be of greater use in more congested areas.   26 

Introduction 27 

The linkages between land use and transportation and the need to incorporate 28 
those linkages in planning are well established (1-4). Under the Intermodal 29 
Surface Transportation Efficiency Act (ISTEA) of 1991 and the Transportation 30 
Equity Act for the Twenty First Century (TEA-21) of 1997 (to a lesser extent), in 31 
order to receive certain types of federal transportation funds, state or regional 32 
transportation agencies are required to model the effect of transportation 33 
infrastructure development on land use patterns and to consider whether 34 
transportation plans and programs are consistent with land use plans.  35 
Metropolitan Planning Organizations (MPOs) are increasingly integrating 36 
dynamic land-use modeling into those efforts to evaluate transportation 37 
infrastructure performance, investment alternatives, and air quality impacts.  38 

Dynamic-coupled models differ from stand-alone models in that they simulate 39 
the dynamic interactions between transportation and human activities. Because 40 
accessibility is an important factor in determining land use, dynamic land use 41 
models have long been integrated with four-step travel demand models (5).  42 
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However, as dynamic components are added, model integrations become 1 
increasingly complex and difficult to implement.  Little guidance exists about 2 
what levels of complexity or disaggregation is needed or appropriate for 3 
modeling land use and transportation and how that changes for different planning 4 
applications. The correct balance likely depends on the particular application of 5 
the model. Many new approaches to comprehensive model-integration are being 6 
unveiled in the research community. However, as noted by Hunt et al. (6), few of 7 
these models have been conclusively shown to increase the accuracy of the 8 
model output.   9 

This paper presents one of the first known attempts to integrate a traffic 10 
router/micro-simulator operations model with a highly disaggregated and 11 
dynamic land use model.  Ongoing work by others demonstrates the possibilities 12 
of incorporating activity-based modeling into land use (Waddell 2010) and of 13 
incorporating activity-based modeling with traffic micro-simulation (Lin 2010).   14 

Three components are used in this modeling effort: UrbanSim for land use (7-9), 15 
TransCAD (Caliper, Inc) for travel demand modeling and traffic routing and 16 
assignment, and TRANSIMS for traffic routing through micro-simulation (10-17 
11).  We compare the more commonly-used integration of the land use model 18 
with the static traffic assignment (TransCAD) to the novel integration of the land 19 
use model with the dynamic router/micro-simulator (TRANSIMS). The latter 20 
integration also requires use of TransCAD for trip generation, so we refer to the 21 
simpler integration as the “two-way model” and the more complex one as the 22 
“three-way model.” 23 

UrbanSim is a land-use allocation model that simulates urban growth for a region 24 
based on externally derived estimates of population and employment growth 25 
(control totals). Expected growth is spatially allocated across the landscape to 26 
simulate the pattern of future development and land use. Agents in UrbanSim 27 
include households,  employers, and real estate developers. The landscape is 28 
divided into grid cells of a user-defined size (geographic units like parcels can 29 
also be used).  Each simulated development event is assigned to one of those 30 
cells based on factors like accessibility, site constraints, zoning, and land value. 31 
Model features include the ability to simulate the mobility and location choices 32 
of households and businesses; developer choices for quantity, location and type 33 
of development; fluxes and short-term imbalances in supply and demand at 34 
explicit locations; and housing price adjustments as a function of those 35 
imbalances.   36 

While almost all other urban growth models rely on aggregate cross-sectional 37 
equilibrium predictive approaches, UrbanSim is an agent-based behavioral 38 
simulation model that operates under dynamic disequilibrium, which allows for 39 
more realistic modeling of economic behavior; supply-demand imbalances are 40 
addressed incrementally in each time period but are never fully satisfied 41 
(Iancono 2008). Because of its dynamic nature, UrbanSim endogenizes factors 42 
that older models took as exogenous, such as location of employment and the 43 
price of land and buildings. 44 
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Because accessibility can play an important role in land use decisions, UrbanSim 1 
is generally integrated with some type of transportation model. The assumption 2 
is that accessibility changes over time, so transportation should be dynamically 3 
linked with land use to improve model results. The degree to which accessibility 4 
affects land use in a given implementation of the model system depends on the 5 
way that the various statistical models in UrbanSim are parameterized and the 6 
extent to which the data reveals a relationship. In our version of UrbanSim, the 7 
residential development choice location model and the commercial development 8 
choice location model both include coefficients for accessibility.     9 

TransCAD is a traditional four-step travel demand model, including trip 10 
generation, trip distribution, mode split and traffic assignment. The trip 11 
generation step quantifies the number of incoming and outgoing trips for each 12 
zone based on land use and employment patterns, and classifies these trips 13 
according to their purpose (e.g., home to work, home to shopping). Trip 14 
distribution assigns the incoming and outgoing travel from the trip generation 15 
step to specific zones. The mode split step estimates the number of trips by mode 16 
of transport. Finally, the traffic assignment identifies the route for each trip. 17 
Traffic assignment is based on an equilibrium model which employs an iterative 18 
procedure to reach convergence.  19 

TRANSIMS is a detailed, data-intensive operations model that is designed to 20 
simulate traffic behavior with great spatial and temporal disaggregation. It 21 
consists of four modules: (1) synthetic population generator; (2) activity 22 
generator; (3) router; and (4) micro-simulator.   In standalone implementations, 23 
TRANSIMS starts by creating a synthetic population based on census and land 24 
use data, among other data sets.  The Activity Generator then creates an activity 25 
list for each synthetic traveler.  The router then computes combined route and 26 
mode trip plans to accomplish the desired activities.  Finally, the micro-simulator 27 
simulates the resulting traffic dynamics based on a cellular automata model, 28 
yielding detailed, second-by-second trajectories of every traveler in the system 29 
over a 24-hour period.  The micro-simulator allows for a highly detailed 30 
characterization of traffic flows and is able to take into account factors like 31 
cueing, car-following, and lane changing behavior. As an operations model, it is 32 
designed to help optimize microscopic factors such as signal timing and 33 
actuation.   34 

While TRANSIMS allows for an activity-based approach to transportation 35 
demand modeling (using the population synthesizer and activity generator), the 36 
model’s router and micro-simulator modules can be applied using standard 37 
Origin-Destination (O-D) matrices.  Implementing only TRANSIMS’s router and 38 
micro-simulator is typically referred to as a “Track 1” TRANSIMS 39 
implementation.  “Track 1” TRANSIMS implementation has been the focus of 40 
the current work so far.  While some have suggested that using only the traffic 41 
supply modules of a microsimulator and not the traffic demand modules fails to 42 
exploit the overall purpose of microsimulation (12), in our view the Track 1 43 
implementation  provides a cost-effective approach for regional planning 44 
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organizations, which can take advantage of the increased resolution of the 1 
TRANSIMS micro-simulator, while continuing to depend upon familiar O-D 2 
matrices.  It also sets the stage for a more complete implementation in the future.   3 

Since we have not yet incorporated TRANSIMS’ activity-based approach to 4 
transportation demand in this model system, the primary difference between the 5 
2-way model and the 3-way model is the way each one characterizes traffic and 6 
resulting accessibilities (which are an input into UrbanSim). TransCAD uses a 7 
volume-delay function, where the congested travel time on the link is equal to 8 
the ratio of the number of vehicles on the link divided by the total capacity of the 9 
link. It assumes that inflow equals outflow for all individual links in the network. 10 
TRANSIMS, on the other hand, calculates congested travel times based on a 11 
simulated interaction of vehicles on the roadway that takes into account factors 12 
like weaving, merging, queuing, traffic signals, and intersection spill-back. 13 
TRANSIMS is designed to replicate the real-world phenomenon that lead to 14 
increased travel time and congestion that cannot be explained by just a simple 15 
volume-to-capacity ratio. This means that failure can occur at some intersections 16 
where inflow no longer equals outflow. As a result, TRANSIMS is likely to 17 
predict more localized bottlenecks.  18 

 19 

Objectives 20 

The first purpose of this paper is to introduce and describe the integration of the 21 
TRANSIMS router/micro-simulator with the UrbanSim land use model. The 22 
second purpose is to determine whether the two model integrations lead to 23 
different land use predictions. To the extent the land use predictions differ, we 24 
analyze the pattern of outputs to better understand how the two approaches to 25 
calculating accessibilities in each transportation model contributes to these 26 
differences.  By characterizing and analyzing these differences we hope to shed 27 
light on the role that transportation and accessibility modeling play in long-term 28 
land use predictions and the tradeoffs to added complexity in such modeling 29 
efforts.  30 

 31 

Methods  32 

Modeling Site 33 

Our models are run for Chittenden County, VT (Figure 1), the most populous 34 
county in the state and the home to its largest city, Burlington. Chittenden 35 
County is among the smallest metropolitan areas where UrbanSim has been 36 
implemented, with an estimated 2009 population of 152,000. It is an excellent 37 
location for modeling for two reasons: first, its small size makes highly 38 
disaggregate and data-intensive modeling tractable; second, its isolation from 39 
other cities (the nearest metropolitan area is Montreal, more than 90 miles away), 40 
means it approximates “closed city” modeling conditions (although we do use 17 41 
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external TAZs to account for inter-county traffic, this is a small component of 1 
the county’s overall transportation). Despite its small size, Chittenden County 2 
has its own Metropolitan Planning Organization, which conducts extensive 3 
modeling.  4 

 5 

 6 

Description of the Models 7 

This analysis was conducted by integrating previously developed 8 
implementations of three models. We used an implementation of UrbanSim 9 
developed for Chittenden County, Vermont, by Austin Troy and Brian Voigt (6, 10 
14, 15). We used the Chittenden County Metropolitan Planning Organization’s 11 
(CCMPO) implementation of TransCAD, which was developed for the MPO by 12 
Resource Systems Group, Inc. The model includes 335 internal traffic analysis 13 
zones (TAZs) to simulate traffic flow, and includes an additional 17 external 14 
zones to represent traffic entering (or passing through) the County from outside 15 
its borders (14). The travel model is based on household travel diaries collected 16 
for the CCMPO. Customized scripts were developed that automated the 17 

FIGURE 1  Map of Chittenden County. 
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integrated models.  We used the implementation of TRANSIMS developed by 1 
Resource Systems Group and Adel Sadek (12, 13). 2 

The 2-way configuration consists of UrbanSim, which generates the socio-3 
economic land use data like total number of households and employment in each 4 
traffic analysis zone, and TransCAD, which derives accessibilities using travel 5 
times from the static vehicle assignment. These travel times are then sent as 6 
input to UrbanSim. After every five years of model time TransCAD is rerun 7 
using updated land use data from UrbanSim, and in turn updating UrbanSim’s 8 
accessibilities (6, 14, 15).    9 

The 3-way configuration adds a third component: the TRANSIMS router/micro-10 
simulator.  In this configuration (Figure 2), TransCAD performs trip generation, 11 
trip distribution, and mode choice, and exports a PM peak vehicle trip matrix to 12 
TRANSIMS. TransCAD’s static vehicle assignment is replaced by TRANSIMS’ 13 
regional vehicle micro-simulation.  The amount and distribution of regional auto 14 
travel demand is identical in the two models, but in the 3-way model 15 
accessibilities are derived using the simulation-based auto travel times and sent 16 
as input to UrbanSim. 17 

  18 

 19 

Integration of the Traffic Micro-simulation Model 20 

Because the 3-way model still uses TransCAD for trip generation and because 21 
TransCAD operates at an aggregate level, a significant task in integrating the 3-22 
way model was to convert the PM peak hour vehicle trip matrices produced by 23 
TransCAD to daily vehicle trips that could be used by the microsimulator.  Using 24 
diurnal distribution data collected during the development of the daily CCMPO 25 
TRANSIMS model, and daily peak PM hour traffic volume (defined as 5:00 pm 26 
to 6:00 pm in the TransCAD model, we derived a PM peak hour to daily 27 
adjustment factor for each of five trip types. The diurnal distribution data is 28 

FIGURE 2  Three-way model configuration. 
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presented in Figure 3 below. The calculated PM peak hour to daily adjustment 1 
factors are set forth in Troy, et al. (14).  A macro was added to apply the daily 2 
adjustment factors to the PM-peak hour CCMPO TransCAD model to generate 3 
daily vehicle matrices from the PM vehicle trip matrices, convert all values to 4 
integers while maintaining row totals, and export the results so they are available 5 
for input into the first module of the TRANSIMS model. 6 

     7 

 8 

 9 

The second significant difference in the 3-way model is the calculation of auto 10 
travel times, which are the most significant component of accessibility in the 11 
model system.  In the 2-way model, TransCAD generates a file that contains 12 
auto, walk/bike, and transit utilities as well as the logsum (composite measure of 13 
accessibility across modes) for each zone-to-zone pair. This file is fed back to 14 
UrbanSim for the next iteration. By incorporating TRANSIMS into the model 15 
chain in the 3-way model, we replace the auto utilities in this file with auto 16 
utilities based on zone-to-zone travel times calculated by the TRANSIMS 17 
microsimulator instead of the TransCAD model assignment module.  18 

TRANSIMS-based auto utilities are calculated using the following regression 19 
equation:  20 

Utility (Auto) = -1.09438 - 0.020795 * TRANSIMS Time 21 

Logsum value for each zone-to-zone pair are calculated based on the new auto 22 
utilities.   23 

Logsum = LN(EXP[Utility(Walk-Bike)] + EXP[Utility(Transit)] + 24 
EXP[Utility(Auto)]) 25 

FIGURE 2  CCMPO TRANSIMS model diurnal distributions. 
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A python script reads the existing logsum file generated by the TransCAD model 1 
as well as a TRANSIMS zone-to-zone travel time skim file. The program updates 2 
the logsum file by calculating a new auto utility and then recalculating the 3 
logsum for each zone pair using the equations presented above. The revised 4 
logsum file can then be used as input to UrbanSim to complete the feedback 5 
process. 6 

A new module was added to the CCMPO TRANSIMS model that writes out a 7 
zone-to-zone travel time skim matrix. The skim file output contains the zone-to-8 
zone congested travel time for the 5:00pm to 6:00pm hour calculated by the 9 
microsimulator. 10 

Model Runs and Analysis 11 

We ran forty year simulations of both the 2-way and 3-way model integrations 12 
using the same data sets, starting in 1990 and ending in 2030. In both cases, 13 
UrbanSim iterated every year while the transportation model ran every five 14 
years. A fixed seed was used in choice-set delineation for UrbanSim to minimize 15 
stochasticity and maximize comparability between the model integrations. Both 16 
model integrations use the same UrbanSim model coefficients.  17 

Two versions of each model were run, one using population and employment 18 
forecasts obtained from the MPO as control totals, ( the “baseline scenario”), and 19 
another using controls totals artificially increased by 50% ( the “increased 20 
control total scenario”). This was done to help determine whether differences in 21 
the model outputs relate to population development pressures.  22 

Finally, we analyzed the outputs. While a large number of indicators are 23 
produced by these model integrations, we focus this analysis on three: residential 24 
units (at the town and TAZ level), commercial square footage (at the town and 25 
TAZ level) and accessibilities, characterized as logsum values (at the TAZ level 26 
only).  Because our model base year is 1990, we were able to conduct a 27 
preliminary validation of both model integrations against observed data from 28 
later years (2006 for household development and 2009 for commercial 29 
development). We found no statistically significant differences in prediction 30 
accuracies for the two model integrations.  For that reason, we do not present the 31 
results here. Nevertheless, we ran statistical analyses to look for differences in 32 
the 2030 outputs of the two models and analyzed geographic patterns in those 33 
differences.  34 

 35 

Results 36 

Statistical differences in models 37 

Variance ratio tests for the whole population of TAZs revealed no significant 38 
difference in variance across the whole population of TAZs between models for 39 
both sets of indicators for 2030.Using paired t-tests, slight significant differences 40 
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were found in predicted commercial square footage for 2030 at the TAZ level 1 
when grouped by town. For the baseline population scenario, significant 2 
differences in commercial square footage were found at the 95% confidence level 3 
for the town of Williston (t=2.654, p=0.011), which has the third largest number 4 
of TAZs in the county. Westford had significant differences at the 90% 5 
confidence level (t=-2.366, p=0.099). With the increased control total scenario, 6 
differences were fewer: there were no significant differences in commercial 7 
square footage at the 95% confidence level, although Burlington (t=-1.825, 8 
p=0.072) and Shelburne (t=-1.867, p= 0.092) were different at the 90% level. A 9 
significant difference in residential units was found for Milton at the 95% 10 
confidence level in the baseline scenario (t=-2.487, p=.03). In the increased 11 
control total scenario, significant differences at the 95% level were found in 12 
residential units for Jericho (t=-3.61, p=.037) and at the 90% level for Milton (t= 13 
-2.12, p=.058). A spatial statistical analysis was also conducted using Moran’s I 14 
(Moran (1950) to see if measures of spatial autocorrelation differed between the 15 
outputs of the two models, but no difference was found. 16 

 17 

Preliminary Comparison of Travel Times 18 

Figure 4 shows the difference in predicted logsum accessibilities between the 2-19 
way model and the 3-way model for the year 2030 under a scenario with baseline 20 
population forecast control totals. Because accessibility is one of the factors in 21 
the land use development choices, the fact that there are clear differences in the 22 
spatial pattern of accessibility served as an indication that differences in land use 23 
outputs were a distinct possibility, and that further analysis was warranted.   24 

 25 

 26 
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 1 

Long-term trends  2 

We looked at graphs of key indicators to see when large discrepancies emerge 3 
between the models, if at all. Figure 5 shows the percent difference in predicted 4 
housing units between the two models for a sample of six towns from 1990 to 5 
2030. It indicates a continuously growing difference for the outlying towns of 6 
Milton and Underhill. Milton has higher predictions for the 2-way model, while 7 
Underhill has the opposite. Other towns, like Bolton, show divergence between 8 
the models in early years and then return to smaller differences later.  Several 9 
towns start to show patterns of divergence between models and then return to 10 
small differences in later years, such as South Burlington, Richmond and 11 
Colchester. Others are in close agreement throughout all forty years of model 12 
time, such as Charlotte and Burlington.  Commercial square footage prediction 13 
graphs (not shown here) show a somewhat similar pattern with Milton also 14 
having increasingly positive 2-way prediction differences over time, several 15 

FIGURE 4 Comparison of accessibilities characterized as logsums by TAZ for 2-way 
(a) and 3-way (b) models in the year 2030. Logsums are unitless measures of relative 
accessibility.  Yellow indicates TAZs with better accessibility, blue indicates worse.  
[Note:  I think that a more useful graphic would be to do this by quantiles instead of 
by values, so that the worst 20% of TAZs in each model are the same color ] 
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outlying towns with the opposite pattern and a number of towns in the middle, 1 
with relatively little difference.  2 

 3 

FIGURE 5  Percent difference in predicted residential units between models 4 
(2-way minus 3-way divided by total units) for a sample of 6 towns.   5 

Side by side maps in Figure 6 and 7 show percentage differences in predicted 6 
residential units (a) and commercial square footage (b) for 2030 at the town level 7 
and the TAZ level, respectively, under the increased control total scenario. 8 
Baseline control total maps are not shown in the interests of space and because 9 
the patterns are similar but much weaker. 10 

11 

FIGURE 6  Town-level comparison under increased control totals:  (a) Percent 
difference in residential development forecasts from the 2-way and 3-way models for 
2030 using baseline control totals.  (b) Percent difference in commercial development 
forecasts from the 2-way and 3-way models for 2030 using baseline control totals.  Blue 
indicates more development predicted by the three-way model; red indicates more 
development predicted by the 2-way model.  
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 2 

 3 

 4 

 5 

 6 

 7 

Discussion 8 

This project was the first of its kind to integrate a traffic router/micro-simulator 9 
with a highly disaggregated and dynamic land use model. This project shows that 10 
such an integration is feasible, although it is also difficult, time consuming, and 11 
expensive. With hundreds of gigabytes of outputs, far more analysis of the 12 
results of these models remains to be done before any final assessment of the 13 
value of this project can be made. However, this analysis represents a 14 
preliminary attempt to address it, at least in the context of a region with little 15 
competitive pressure on land use and low rates of congestion.  16 

The fact that accessibilities are far more spatially heterogeneous in the 3-way 17 
model (Figure 4), would lead us to believe that, theoretically, there could be 18 
systematic differences in the land use outputs. Our UrbanSim implementation 19 

FIGURE 7   Same as Figure 6 but at the TAZ level.   
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consists of ten statistical models that drive activities like household and 1 
employment moves, land price, and development events. While many include 2 
spatial parameters such as location within the “urban core,” or the amount of 3 
commercial or residential development within walking distance, only the 4 
residential and commercial development models include parameters on 5 
accessibility from the travel model.  Because TRANSIMS predicted more 6 
localized areas of reduced accessibility within the interior of the county, we 7 
expected to find that some more centrally located areas might develop slightly 8 
less in the 3-way model than in the 2-way model.  9 

While the results of our two models are different, it is not clear that these 10 
differences are important enough to matter for the purposes of land use change 11 
prediction. Our validation results (not presented here) show minimal differences 12 
between the two in predicting intermediate-year data. Statistical pairwise 13 
comparisons of TAZ-level results grouped by town suggest that differences in 14 
predicted indicators for 2030 are present for only a few towns. Tests of the whole 15 
population of TAZs found no significant difference in variance for both land use 16 
indicators.  17 

Nonetheless, our maps of 2030 prediction differences in commercial 18 
development under increased control totals (which was use because it 19 
emphasizes the differences between models more) show some interesting patterns 20 
that suggest potential systematic spatial differences in predictions. As Figure 6 21 
shows, all the peripheral towns along the northern and eastern boundaries of the 22 
county have more commercial development under the 2-way model than under 23 
the 3-way. The same pattern is evident at the TAZ level, although heterogeneity 24 
is slightly greater along the periphery. This result is intuitive given what we 25 
know of the models. As population grows, TRANSIMS predicts more congestion 26 
and delay and hence lesser accessibility in the outer TAZs than TransCAD. This 27 
pattern is particularly evident for TAZs that do not adjoin the Interstate (where 28 
the Interstate runs through, there are fewer red TAZs). Redundancy of routes is 29 
very poor the further out one travels in the county, so just a few high-delay links 30 
can make a big impact on accessibility in areas that require a long drive on non-31 
Interstate routes. Our preliminary analysis of TRANSIMS’s link level outputs 32 
(not presented here) shows a number of predicted traffic bottlenecks along such 33 
key arterials that connect outer suburbs to the urban core that TransCAD does 34 
not capture. Not all of these “red TAZs” are on the outer periphery. Some are 35 
more central, but require significant driving on bottleneck-prone arterials. 36 
Interestingly, as is reflected in Figure 8, most of the TAZs containing an 37 
Interstate exit appear to have higher employment predictions in the 2-way model, 38 
which is consistent with this explanation.   39 
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 1 

FIGURE 8  Blow-up of Figure 7(b) showing Interstate Exits.   2 

 3 

No clear spatial pattern is evident for differences in residential predictions.  4 
Figure 6 suggests that only one of the towns included in the graph experience 5 
steadily increasing differences over time between models. Otherwise, differences 6 
oscillated within a small range over time. This difference between residential and 7 
commercial indicators is likely due to the model coefficients that relate to output 8 
from the transportation models. The residential developer model includes a 9 
parameter for home accessibility to employment while the commercial developer 10 
model includes a parameter for work accessibility to employment. Further, the 11 
commercial development coefficient is almost twice the magnitude of the 12 
residential coefficient.  13 

  14 

Conclusion 15 

TRANSIMS is designed as an operations model for assessing and optimizing 16 
microscopic factors in the traffic network. Some believe that models like this are 17 
inappropriate for coupling with long-term land use change models. Our land use 18 
results from the 2030 simulation look generally reasonable, but our preliminary 19 
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analysis of link level data from TRANSIMS indicates that after forty years of 1 
simulation, a number of unrealistic bottlenecks and congestion points develop. 2 
This is probably because, as an operations model, TRANSIMS runs with an 3 
assumption that factors like signal timing and lane rules are to be changed over 4 
time. When they remain static over long periods like forty years, this may lead to 5 
unrealistic characterizations of accessibility. Nonetheless, these bottlenecks only 6 
had a very minor impact on development predictions. This may be because of our 7 
model coefficients, which were estimated in an area where traffic congestion is 8 
relatively minimal. Had we estimated these coefficients in a larger urban area 9 
with extensive congestions, it is possible that the impacts of these accessibility 10 
differences on development would have been greater. Hence, the impact of 11 
transportation model type on land use results is extremely sensitive to model 12 
coefficient specification.  It is also possible that had we run the TRANSIMS 13 
Track 2 implementation which includes the activity model with disaggregated 14 
activity locations, differences would have been more pronounced. 15 

Given our current results, there appears to be little justification for expending the 16 
large amount of time and money required to implement TRANSIMS for the 17 
purposes of long-term land use modeling in a context like Chittenden County. 18 
However, this approach might be more valuable in large metropolitan areas 19 
where population pressures and traffic delays are much greater. In such cases, we 20 
would expect to find delay-related (as opposed to distance-related) accessibility 21 
having a greater impact on land use. It is possible that in such cases a land use 22 
model integrated with TRANSIMS would yield a more accurate characterization 23 
of accessibility, leading to better land use predictions. However, such a model 24 
should probably only be run for short-term predictions in highly congested areas, 25 
as long-term simulations could result in unrealistic localized stoppages of traffic 26 
flow which, in real life, could be addressed through minor interventions, like re-27 
timing signals. Further research is warranted to determine the usefulness of 28 
including a micro-simulator in land use modeling for more populous and 29 
congested regions and to determine the appropriate time frame of modeling in 30 
this context. 31 

The integration of TRANSIMS with a land use model may also be valuable in 32 
assessing how hypothetical changes to the transportation network might 33 
influence the spatial pattern of development, potentially even in smaller 34 
metropolitan areas. We are currently in the process of running the 2-way and 3-35 
way models on an alternative scenario involving the construction of a large 36 
number of new roads to determine if the 3-way model’s land use predictions are 37 
more spatially sensitive to the new infrastructure.   This and other future research 38 
will help us better understand the usefulness and cost effectiveness of complex 39 
integrated modeling tools for the planning process. 40 

 41 
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