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Class 6: (Climate Forcings and
Feedbacks)

 What controls climate on Earth over
varying timescales (the forcings)?

* What are some important climate
feedback systems and how do they
work?

Learnmg Objectives

Describe Earth’s orbital cycles and explain how they influence climate

forcing

over time

Understand and be able to provide specific examples of how feedback systems can amplify or diminish a climate system
Understand how the three “knobs” of global climate (incoming solar radiation, albedo, the greenhouse effect) change

Explain why a large, short-term perturbation to the climate system could create long-lasting effects

GEOLOGY 095, 195. Climate: past, present, future




Heads up on planning - Exams

THURSDAY September 26
THURSDAY October 24
THURSDAY November 21

* Are during class time (75 min) — no exceptions — per syllabus (except for ACCESS)
e Can be taken anywhere with good internet connection — on blackboard

* Are on your honor

* Will be based on information provided in class

* We will do our best to have review sessions — may be on-line

* Short answer and essay format

* No final exam; there will be final paper (due date TBD)



Today’s Class
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Looking back at last lecture (and finishing it!) including sea
level

. Earth’s orbital cycles

. Feedback systems

. Climate in the news

. How the three “knobs” of global climate change over time
. How a large, short-term perturbation to the climate system

create long-lasting effects

. Quiz 1, take 2!



1. Looking back. Cryosphere (frozen places)
Components (description and process)

e Seaice

* Glaciers

* |ce sheets and ice
caps
* Alpine glaciers

ce Shelves
cebergs

Permafrost

* Seasonal snow cover

https://globalcryospherewatch.org/about/cryosphere.html



Sea Ice — it’s diminishing in coverage, volume, and age
and that’s important for climate (and shipping!)

SEA ICE THICKNESS (m)

https://sites.uci.edu/zlabe/



Both large Ice Sheets are melting and losing mass

GRACE Observations of Greenland Ice Mass Changes

Average Mass Loss:

281 Gigatons/year

gatons)

NASA's Gravity
Recovery and
Climate Experiment

Mass Loss (G

Antarctic = similar
s | Aug 2016: -37487

04-2002

Greenland Ice Loss




Ice Shelves — are floating ice but matter to ice
sheets

* Some glaciers extend to the
ocean and transition to ice
shelves

* |Ice shelves buttress glaciers
and slow flow

* When ice shelves calve,
glacier flow rates increase,
glaciers lose mass, and their
surface lowers

https://www.nationalgeographic.com/environment/2018/11/exclusive-first-pictures-of-iceberg-three-times-the-size-of-manhattan/



Permafrost — ground ice, mean annual ground T < OC
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Permafrost — tricky stuff — requires good engineering
to prevent melting EVEN when climate is stable

Climate change and a
warming arctic will cause
melting and damage




Permafrost — is loaded with carbon (methane) and it’s melting
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Seasonal Showcover — matters for albedo!

Nov 15, 2013




Arctic snow cover (and mass) is decreasing over the
last 40 years — just like sea ice

— May Arctic Snow Fover Extent
(NOAA Snow Charts) -5.0%/decade

— June Arctic Snojv Cover Extent
(NOAA Snow CRarts) -17.8%/decade
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https://arctic.noaa.gov/Report-Card/Report-Card-2016/ArtMID/5022/ArticlelD/276/Terrestrial-Snow-Cover



Sea level — what matters and what does not!

Sea level reflects the volume of ocean water and its temperature (since water expands when
warm) with an adjustment for how the Earth deforms when loaded by water and ice.

if the ice is floating, it doesn’t matter... If the ice in on land, it matters!




Sea level — why the effect of climate change is
tough to predict

* Sea-level rise is controlled by . Clobal meanisea levelnise ___ |PCC AR5
ocean temperature (water density) ’
and by run-off as ice on land melts. 08

Mean over
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* Estimating ice sheet and glacier

06

melt is difficult and complicated by E |
estimation of temperature rise and 0af (0_13-2124fgy -
seasonal precipitation change. ; 05 ft |
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THINK, PAIR, SHARE

Work with a partner and come up with THREE reasons
why the Cryosphere and climate change are intimately
linked and could affect sea level — consider feedbacks!




Sea level and climate effects of Cryospheric change

Water locked up in
terrestrial ice ends up in
the ocean changing
volume and sea level

Loss of glacial ice equals
reduced albedo, more
solar energy absorbed;
planet warms. Water
expands.

Change of ice sheet size
alters weather patterns
and nutrient/sediment

loads to ocean.

Loss of permafrost
liberates fossil carbon
and can destabilize
landscapes




2. Orbital cycles and the seasonal distribution of
radiation

Eccentricity Obliquity/Tilt Precession
221°-24.5°

100,000 years 41,000 years 23.006 years



Professor Milutin Milankovic — Serbian mathematician and engineer

The Milankovitch cycles are periodic or quasiperiodic
changes in the parameters of the Earth’s orbit and tilt

Collaborated with German meteorologist Vladimir
Koppen (global climate classification) and German
geophysicist Alfred Wegener (plate tectonics)

Ideas were Accepted, rejected, accepted!

“These changes do not effect the overall annual
amount of solar radiation hitting the Earth, but they

affect the strength of the seasons in different ways at
different latitudes.”




What matters is summer radiation in high
latitudes...the birthplace of glaciers (65 N, Why?)
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Do orbital cycles explain climate change directly?
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Summer insolation (65°N)

Tilt Precession
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Richard Alley (you’ll hear more about him), Penn State
and Obliquity (the 41,000 year cycle)

This is 2010.

Rohrabacher doubts
that global warming is
caused by humans.
During a congressional
hearing on climate
change on February 8,
2007, Rohrabacher
mused that previous
warming cycles may
have been caused

by carbon

dioxide released into
the atmosphere by
"dinosaur flatulence".

REP. DANA ROHRABACHER
R-Callfornia, 46th District Ok, Wikipedia...lost in

Huntington Beach, Costa Mesa

-

W ROMRBACHER | BB

2018...




Comprehension Check

Orbital mechanics, as analyzed by Milankovic, describe how:

A. the total energy received over a year by Earth from the sun changes
over time.

B. the seasonal distribution of energy arriving at Earth from the sun
over a year changes over time at high latitudes.

C. the Earth changes from glacial to non-glacial climates.
D. climate zones around the Earth are distribute by latitude

E. the seasonal distribution of energy arriving at Earth from the sun
over a year changes over time at low latitudes.



3. Feedback systems

Example 1. (+) Ice sheet melt then surface lowering (lapse rate)
Example 2. (-) Mountain glacier retreat

Example 3. (+) Loss of glacier grounding, floating ice



Feedback Example 1. (+)
ce sheet melt then

owering (lapse rate)
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Feedback Example 2. (-) Mountain glacier retreat

Inferred age®: bPresent;
Terrestrial ages™:
Adiabatic Processes
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Feedback Example 3. (+) Loss of glacier grounding,
floating ice followed ice shelf thinning

Pine Island Glacier

Grounding line retreat from ERS SAR interferometry

= A
Glaci e~ O
www.AntarcticGlaciers.org . \ P S ? 4 0 k
Simplified schematic figure of a grounding line A et : { m
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ﬁ =< - ; maximum
’ - ' retreat

200m
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4. Climate in the news

m Newsweek

The Amazon Rainforest Fires Are Pumping the CO2 Trees
Normally Absorb Out Into the Atmosphere

The European Space Agency (ESA) has said that forest fires in the Amazon
could be having an impact on global climate change as they ...
20 hours ago

Los Angeles Times

The Amazon rainforest is on fire. Climate scientists fear a
tipping point is near
Land-grabbers in Brazil are slashing and burning the Amazon rainforest. If

too many trees are removed, Earth's climate could lose a critical ...
2 weeks ago




Where are most fire emissions of carbon? Are they
seasonal? Do they reoccur yearly?

Jan 2003
Carbon Emissions

0 5 W B M 2% N
g Clm*2 7 M days

https://www.nasa.gov/feature/goddard/2019/satellite-data-record-shows-climate-changes-impact-on-fires



Alaska 2019 — Heat wave and fire appear

related
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Cire/climate -

‘eedbacks are

AuUMmerous an

d varied

* Fires damage forests, temporarily lowering carbon uptake

* Fires release stored carbon, radiocarbon age of carbon

emissions from

Indonesian peat fires is about 800 years!

* Fires release black carbon (soot) which absorbs solar
radiation and darkens snow

* Aerosols from fires reduce rainfall by making it harder for
water droplets to form in the tropics, and thus



Carbon from Indonesian fires
matter at a global level

“equivalent to 13—
40% of the mean

annual global carbon
emissions from fossil

fuels.”
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Comprehension Check

Which of the statements below is true.
A. We can estimate with certainty future carbon emissions.
B. We can use estimates of ice sheet melt to estimate sea level rise.

C. We understand all the feedbacks (and their magnitude) that control
the melting of ice sheets.

D. We know exactly how climate change will affect the global
distribution of precipitation

E. We know exactly how climate change will affect the global
distribution of temperature.



5. How the climate knobs get tweaked (examples)

Solar Output Albedo Greenhouse Effect

* Incoming solar radiation — stable sun but reduced by large volcanic eruptions
e Albedo — change largely driven by cryosphere
* Greenhouse effect — we've talked about this...



Solar output is VERY stable
(< 1%)
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But... Incoming solar
radiation is reduced Mauna Loa Observatory, Hawail (seasonal variations removed)
by large volcanic ash Pt e W

eruptions — short lived
effect.
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Albedo — change
largely driven by
cryosphere

amaterial'salbedo tellsus how
wellitreflectsthe sun'senergy.

0 1
Pure black Pure white
100% 100%
absorbent reflective



6. How a small change now can make a big
difference for a long time
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Next time - The Carbon Cycle

READ: Carbon Cycle Primer Website and Ruddiman Ch. 19

* |dentify carbon sinks, sources, and reservoirs and predict how they will
change if people keep doing what they have been doing since the dawn of
the industrial revolution

* Explain the difference in processes between the ‘surficial’ carbon cycle and
the ‘deep’ carbon cycle.

* Explain why atmospheric carbon dioxide concentrations fluctuate in a
consistent manner throughout the year

* Diagram the interactions over time between various stocks and flows of the
carbon cycle



