

Mary Concklin

Visiting Extension Educator

Fruit Production and IPM

University of Connecticut

UCONN

COLLEGE OF AGRICULTURE, HEALTH AND NATURAL RESOURCES

PLANT SCIENCE AND LANDSCAPE ARCHITECTURE

Covering:

- Availability of nutrients
- What is needed by the trees & its function
- Understanding soil test results
- Understanding Tissue analysis
- Nutritional corrections pre-plant & in established orchards
- When to fertilize
- Deficiency and toxicity symptoms
- Develop nutritional programs based on soil & tissue analysis

Nutrient Availability depends on:

- Soil texture
- **Soil** pH
- Existing mineral nutrients in the soil
- Available water
- Orchard floor management
- Climatic conditions
- Condition of the root system

How Soil pH Affects Availability of Plant Nutrients

- Soil texture
- Soil pH
- Existing mineral nutrients in the soil

Nutrient in excess	Induced deficiency
Nitrogen	Potassium

Nutrient in excess	Induced deficiency	
Nitrogen	Potassium	
Potassium	Nitrogen, Calcium, Magnesium	

Nutrient in excess	Induced deficiency
Nitrogen	Potassium
Potassium	Nitrogen, Calcium, Magnesium
Phosphorus	Potassium, Copper
Sodium	Potassium, Calcium, Magnesium
Calcium	Magnesium, Boron
Magnesium	Calcium, Potassium
Iron	Manganese
Manganese	Iron
Copper	Iron

Available water

- Orchard floor management
 - Mowed
 - Weeds

- Orchard floor management
 - Mowed
 - Weeds
 - Clean strip

- Orchard floor management
 - Mowed
 - Weeds
 - Clean strip
 - Soil compaction/aeration

- Climatic conditions
 - Moisture
 - Heat

Soil microbial activity

Photo: appleman.ca

Condition of the root system

Soil Test Submission Form

The University of Vermont

Agricultural & Environmental Testing Laboratory

and UVM Extension

For vegetables, fruits, lawn/turfgrass, trees, shrubs, and flowers. Home and Commercial. See crop list on back.

Main Contact (mailing address):	Copy to (Extension, consultant, etc.) or Billing Info.	
Name:	Name:	
Farm/Company:	Company/Agency:	
Address:	Address:	
City, State, Zip:	City, State, Zip:	
Phone:	Phone:	
E-mail:	E-mail:	
Send results by: Mail or E-mail	Send results by: Mail or E-mail	

Vermont county where samples were taken:

The basic nutrient test costs \$14 per sample (1 bag of soil = 1 sample), and includes pH, available P, K, Ca, Mg, S, micronutrients, CEC, organic matter, and fertilizer recommendations for one crop. Recommendations for additional crops on the same sample are \$2 each. Add \$10 to heavy metal analysis (in addition to basic analysis, for a total fee of \$24). Metals only analysis (no nutrient test) is \$15 per sample (Crop Code Z2). One-half cup to one cup of sample required for all tests; any clean plastic bag may be used.

Please print clearly.

Lab ID (For lab use only)	Field or Sample Name	Approx. area represented by sample	Crop Codes (see back of form; 1 crop included in \$14 fee; add'l crops \$2 each)	Check here for metals test	Fee
1		sq. ft. acres			\$
2		sq. ft. acres			\$
3		sq. ft. acres			\$
4		sq. ft. acres			\$
5		sq. ft. acres			\$
6		sq. ft. acres			\$
7		sq. ft. acres			\$
8		sq. ft. acres			\$
9		sq. ft. acres			\$
10		sq. ft. acres			\$

Use additional sheets for more than 10 samples.

Please include payment, unless prior arrangements have been made. Checks only, payable to UVM. Total fee \$_______

If this form came in a pre-addressed mailer, one sample can fit in it. Otherwise, use a box or large envelope.

Send to: AETL, Univ. of Vermont, 262 Jeffords Hall, 63 Carrigan Drive, Burlington, VT 05405-1737 Other tests available on request. Email us at: agtesting@uvm.edu 802-656-3030 pss.uvm.edu/ag_testing Test results are normally ready to mail/e-mail on the 2nd Monday after samples arrive at the lab.

Cost \$14 per sample

Soil Testing

- ■Use same lab
- Will vary based on:
 - Topography
 - Cultivation practices
 - Time of year sampling
 - Pesticides influence?
- Pre-plant and throughout planting lifespan
- Compost testing

Soil Nutrient Analysis Laboratory, 6 Sherman Place, Box U-102, Storrs, CT 06269-5102,

NUTRIENTS EXTRACTED FROM YOUR SOIL (MODIFIED MORGAN EXTRACTABLE)

			BELOW OPTIMUM	OPTIMUM	ABOVE	OPTIMUM
pН	6.5	5				
Calcium	2456	lbs/acre	*******	******	4	
Magnesium	383	lbs/acre	*******	******	*****	
Phosphorus	30	lbs/acre	*******	*****	****	
Potassium	113	lbs/acre	******			

Element	ppm	Soil Range	
Boron (B)	0.20	0.1-2.0	Estimated Total Lead: Low, typical background levels
Copper (Cu)	0.20	0.3-8.0	
Iron (Fe)	2.70	1.0-40.0	
Manganese (Mn)	2.60	3.0-20.0	
Zinc (Zn)	2.40	0.1-70.0	
Aluminum (Al)	20	10-300	

LIME AND FERTILIZER RECOMMENDATIONS

Element	Level	Desired level
pН	5.9	6.5

2.25 tons lime/A needed

Mg	245 #	400 #
----	-------	-------

400-245 = 155 # Mg/A needed

12% Mg lime = 240 # Mg/ton

2.25 tons = 540 # Mg

2400-1500 = 900 # Ca/A needed

21.4% Ca lime = 428 # Ca/ton

2.25 tons lime = 963 # Ca

Soil Analysis.
Established Apple

Element	Level	Desired level
pН	5.9	6.5

2.25 tons lime/A needed

Mg 245 # 400 #

400-245 = 155 # Mg/A needed

12% Mg lime = 240 # Mg/ton

2.25 tons = 540 # Mg

Ca 1500 # 2400 #

2400-1500 = 900# Ca/A needed

21.4% Ca lime = 428# Ca/ton

2.25 tons lime = 963 # Ca

K 230 # 240 #

 $240-230 = 10 \# K_20/A$

Muriate of potash is 0-0-60

 $10 \# K_2 0 = 16.6 \# Muriate/A$

Element	Level	Desired level
pН	5.9	6.5

2.25 tons lime/A needed

Mg 245 # 400 #

400-245 = 155 # Mg/A needed

12% Mg lime = 240 # Mg/ton

2.25 tons = 540 # Mg

Ca 1500 # 2400 #

2400-1500 = 900# Ca/A needed

21.4% Ca lime = 428# Ca/ton

2.25 tons lime = 963 # Ca

K 230 # 240 #

 $240-230 = 10 \# K_20/A$

Muriate of potash is 0-0-60

 $10 \# K_2 0 = 16.6 \# Muriate/A$

Sulpomag (K-Mag) is 0-0-21-11

 $10 \# K_2 0 = 47.6 \# Sulpomag/A$

47.6 # Sulpomag = 5.23 # Mg

 $\mathbf{P} \qquad \qquad 1 \# \qquad \qquad \geq 1 \#$

2015 Soil Testing Form - Commercial Plant Tissue Test

Instructions:

- Soil sampling instructions, and crop codes on page 2.
- Please print legibly.
- Please give each sample a unique name.
- Make checks payable to "UNH Cooperative Extension."
- Please allow 3 WEEKS for test results.

Mail or Bring S	Samples to:
-----------------	-------------

UNH Cooperative Extension Spaulding Hall – Room G28 38 Academic Way Durham, NH 03824

Questions?

Call 603-862-3200

Email: soil.testing@unh.edu

Visit: http://extension.unh.edu/Soil-Testing

Address: City:			County:				
					State: Zip Code		
					FAX:		
Receive Test Results by	(choose one):	Email FAX	Payment Type:	Cash Check	Account		
UNHCE ID# (leave blank)	Sample Name	Crop Codes*	Variety(s)	Apple Only - Root stock**	Size of planting - (Acres or # bushes/trees/ vines)	Plant Tissue Test \$26	TOTAL Sample Cost:
* List codes for all crops fo	r which you would like recomn	pendations. See list on n	age 2 ** Root stock codes	are on page 2	27		
		34.	age z. Hoot stock codes	are on page 2		TOTAL COST:	
Is this test for (check one)	d fertilizer, lime or wood asi routine fertilizer i diagnose a problem, or if yo	ecommendations?	diagnosis of a p			3	
					Co	ost \$20	5

Foliar Analysis

Timing: 60-70 days after petal fall

Much earlier	60-70 days > PF	Much later
Higher Concentrations	Most elements are stable	Higher Concentrations
Nitrogen	Magnesium	Calcium
Phosphorus (slightly)	Iron	Manganese
Potassium	Copper	
Boron		

Foliar Analysis

- Timing: 60-70 days after petal fall
- Results will vary with tree stresses
 - Water
 - Crop load
 - Pest injury
- Will vary with pesticide use
 - Copper, sulfur, mancozeb
- Will vary from cultural practices

Foliar Analysis

- Troubleshooting visual or perceived problems
 - 2 samples

Photo K. Shackel

Foliar Analysis Standards

Nutrient	Apples	Stone Fruit
Nitrogen	2.2 - 2.4 % (Mac 1.8-2.2 %)	3.0 - 4.2 %
	2.4 – 2.6 % nonbearing	(non-peach 2.4 - 3.4%)
Phosphorus	0.08 - 0.33 %	0.08 - 0.33 %
Potassium	1.2 - 1.8 %	1.3 - 1.9 %
Calcium	1.3 - 2.0 %	1.3 - 2.0 %
Magnesium	0.35 - 0.5 %	0.4 – 0.70 %
Boron	35 – 50 ppm	25 – 50 ppm
Iron	60 – 400 ppm	80 – 500 ppm
Manganese	35 – 135 ppm	35 – 135 ppm
Copper	7 – 12 ppm	7 – 12 ppm
Zinc	25 – 50 ppm	25 – 50 ppm

Nutrient	Foliar Results	Sufficiency Range
N %	1.55	2.2 - 2.4
P %	0.08	0.08 – 0.33
K %	0.11	1.2 – 1.8
Ca %	1.21	1.3 – 2.0
Mg %	0.34	0.35 – 0.50
B ppm	21.9	35 - 50
Cu ppm	0.9	7 - 12
Fe ppm	39.8	60 - 400
Mn ppm	60.7	35 - 135
Zn ppm	27.3	25 - 50

Nutrient	Foliar Results	Sufficiency Range
N %	1.55	2.2 - 2.4
P %	0.08	0.08 – 0.33
K %	0.11	1.2 – 1.8
Ca %	1.21	1.3 – 2.0
Mg %	0.34	0.35 – 0.50
B ppm	21.9	35 - 50
Cu ppm	0.9	7 - 12
Fe ppm	39.8	60 - 400
Mn ppm	60.7	35 - 135
Zn ppm	27.3	25 - 50

	Soil Results	Sufficiency Range
рН	6.2	6.0 - 6.5
Ca lbs	2862	2400
Mg lbs	> 500	400
P lbs	18	<u>></u> 1
K lbs	> 600	240

Nitrogen

- Mobile in the tree
- Vegetative growth
- Fruit set & size
- Cellular functions

Dr. Denise Neilsen, British Columbia

Nitrogen

- Soil applications
 - New plantings after soil settles**
 - No later than early mid July
 - Split applications
 - Dependent on crop load
 - Soil texture

Lailiang Chen, "Nutrient Management for Apple Trees on Dwarfing RS"

Return Bloom of Gala/M.26 Trees in Response to N Supply

2007 2008

Lailiang Chen, "Nutrient Management for Apple Trees on Dwarfing RS"

Nitrogen

- Soil applications
 - New plantings after soil settles
 - No later than early —mid July
 - Split applications
 - Dependent on crop load
 - Soil texture

- Foliar applications
 - Multiple applications
 - Urea
 - -3 #/100 at Pink
 - -5 # / 100 at PF
 - Urea not for stones, pears

N Deficiency

- Intervienal on oldest leaves first
- Vegetative growth rate slows
- Impacts return bloom
- Fruit size smaller, color off
- Causes include
 - Low OM
 - Lack of N applications
 - Drought
 - Overcropping

Photo OMFRA.org

N Excess

- Dark green foliage
- Young trees foliage burn, root tip burn
- Excess growth
- Delayed fruit maturity
- Reduction in fruit quality, storability
- Increased susceptibility to diseases, insects
- Increased susceptibility to winter injury
- Over applications may take years to correct

Potassium

- Mobile in tree
- Fruit size & color
- Winter hardiness
- Drought

- Soil applications
 - -Whenever soil is not frozen
 - -Muriate not for stone fruit
- Foliar applications

K Deficiency

- Oldest leaves first
- Marginal leaf scorch
- Entire leaf when severe
- Overall reduction of tree growth, yield
- Small fruit, failure to ripen
- Early fruit drop
- Worse with over-cropping, heavy crop, drought

Phosphorus

- Mobile in tree
- Root development & growth
- Early shoot growth

- Soil applications
 - -Spring or Fall
 - -Cold soils
- Foliar applications
 - No documented response

P Deficiency

- Usually not a problem
- Spring cold soils
 - purplish color
- Defoliation if severe
- Reduce Mg uptake

Photo: Johnson, Clemson

Magnesium

- Mobile in tree
- Photosynthesis
- Reduced fruit drop
- Cellular functions
- Bud development
- Soil applications
 - -When soil is not frozen
 - -Dolomitic lime
 - -Epsom salts
 - -Sulpomag

- Foliar applications
 - Epsom salts,
 - 15 lbs/100 PF
 - 1st & 2nd covers
 - Avoid hi temperatures & poor drying conditions

Mg Deficiency

- Oldest leaves first
- Interveinal chlorosis
- Turns reddish
- Leaf margins
- Severe with heavy crops
- May look like early K deficiency

Photo: ipm.Illinois.edu

Mg Deficiency

- Oldest leaves first
- Interveinal chlorosis
- Turns reddish
- Leaf margins
- Severe with heavy crops
- May look like early K deficiency
- Blind wood

Calcium

- Immobile in tree
- Winter hardiness
- Cellular functions
- Fruit quality, firmness

- Soil applications
 - Lime when soil is not frozen
 - -Gypsum

- Foliar applications
 - -Ca nitrate
 - -3-4 #/100 til mid-July
 - -4-5 #/100 after mid-July
 - -Ca chloride
 - -2-3 #/100 June, July
 - -3-5 #/100 August, Sept

Ca Deficiency

Bitter pit

Dieback of leaf, root tips

Leaf curl with necrotic edges

Incomplete flower formation

Fruit quality, yield reduced

More common on sandy

soils

Boron

- Immobile in tree
- Pollen tube growth
- Bud development
- Fruit set
- Uniform fruit maturity
- Root growth

- Soil applications
 - -2-3 # actual B/A
- Foliar applications
 - -Solubor
 - -3 #/A, TC Pink
 - -3 #/A, 1st & 3rd covers
 - −Post harvest at 5 #/A

B Deficiency

- Death of growing tip
- Youngest leaves first
- Reduced shoot growth
- Misshapen fruit, corking
- Reduced fruit set
- Poor root growth

Zinc

- **●** Immobile in tree
- Availability impacted by:
 - High P soil levels
 - High soil pH
 - High OM
 - Low soil temperatures
- Pollination
- Fruit set
- Early season shoot growth

Zinc

- Deficiency symptoms
 - Young leaves first
 - Rosette symptoms
 - Blind wood
 - Poor fruit set

Photo M. Concklin

Photo M. Concklin

- Soil applications
 - Not effective
- Foliar applications
 - Zn EDTA
 - 3 qt or 3 #/A
 - TC, 2nd cover
 - Zn sulfates
 - Fungicides

Zn toxicity may induce Cu deficiency

Copper

- Immobile in the tree
- Helps with fruit set
- Vegetative growth

- Deficiency
 - -Flowering, fruit set reduced
 - -Fruit small, poor color

Photo Clemson Univ

- Correct with
 - Copper fungicides,
 bactericide

Problems with guessing:

- Multiple deficiencies may exist
- Symptoms similar for deficiency & excesses
- Guessing may result in
 - Inadequate or excessive tree vigor
 - Over or under nutrient applications
 - Poor fruit set
 - Reduced fruit quality
 - Misdiagnosis
- Costs you \$\$\$
- Visual symptoms = damage already done

Deficiencies confused with BMSB injury: Boron, Calcium

Long Term Management Decisions

- Supplemental water during dry periods
- Foliar analysis annually
- Soil analysis every 2-4 years same lab
- Combine both for fine-tuned fertilizer programs
 - -Crop load
 - -Cultural practices
- Past experience
- Comparing results from year to year will show a reliable trend

INFORMATION BULLETIN 219 Cornell Cooperative Extension

Orchard Nutrition Management

Warren C. Stiles and W. Shaw Reid

http://documents.crinet.com/AgSource-Cooperative-Services/Agronomy/OrchardNutrtnMgmt.pdf

