2014 Vermont Apple Season Roundup (& a look ahead to 2015)

TERENCE BRADSHAW
TREE FRUIT & VITICULTURE SPECIALIST
UNIVERSITY OF VERMONT
119TH ANNUAL VTFGA & UVM APPLE PROGRAM ANNUAL MEETING

FEBRUARY 12, 2015

2014: The crop that wasn't?

2014: The crop that wasn't?

- Total production down in Vermont ~40% from five-year average
- Crop uneven overall
 - Great crop in Grand Isle county
- •Over production in 2013
- •Winter damage Dec 2013, Feb 2014
- •Prepare to thin in 2014

Disease management 2014

Research Projects, 2014

E-IPM Outreach

UVM Fruit website, mailing list, & blogs

- •Site redesign & blog added April 2014
- •76 posts since April 2014
- Continued support 2015
- Grower Survey

UVM Fruit

A resource for fruit production in Vermont and beyond.

UVM Fruit

:: UVM Fruit
Tree Fruit
Grapes
Small Fruit
UVM Fruit Blog
UVM Fruit YouTube
Network for Environment
and Weather Applications
(NEWA)
Contact Us

UVM Fruit News

- New England Grape Production Survey
 New England Grape Growers: The USDA National
 Agricultural Statistics Service will be completing its first annual survey of grape...
- 2015 Catamount Farm Summer Courses
 The University of Vermont will offer a suite of complementary farm-based summer courses in summer 2015 designed to provide...
- <u>February 10th Northern Grapes Webinar Registration is Open</u>
 The Northern Grapes Project Webinar Series "Comparing and Contrasting Vertical Shoot Positioning and Top Wire Cordon Training Systems" Tuesday,...

MEADLINES BY

Quick links

- Network for Environment & Weather Applications (NEWA)
- Plant Diagnostic Clinic
- Agricultural and Environmental Testing Lab
- Pesticide Education and Safety Program
- Vermont Master Gardener

E-IPM Outreach

UVM Fruit website, mailing list, & blogs

- •76 posts since April 2014
- Continued support 2015
- Grower Survey

NEWA IPM Application

- newa.cornell.edu
- •Six airports, nine on-site weather stations

Biological management of apple replant disease

NORTHEAST SARE

Biological management of apple replant disease

Post-plant assessment of biofungicides/bionematicide materials against ARD

ARD is a disease caused by a complex of nematodes, fungi, and bacteria that reduce tree growth and productivity

Biological management of apple replant disease

Two materials:

- MeloCon (Certis)
- Actinovate (Novozymes/Monsanto BioAg)

Two sites

- South Hero
- •South Burlington

Four soil injections/year

Site	Treatment	TCSA incre	ease %
Site	Treatment	value	p-value
HREC	NTC	32.9	0.7417
HREC	ACT	32.2	
HREC	MCN	30.9	
SHVT	NTC	67.4 b	0.0003
SHVT	ACT	62.6 b	
SHVT	MCN	72.9 a	

TCSA: Increase with Melocon at one site

		Terminal leader growth,			
Site	Treatment	<u>cm</u>			
		<u>value</u>	<u>p-value</u>		
HREC	NTC	11.2 c	0.0001		
HREC	ACT	23.2 a			
HREC	MCN	19.6 b			
SHVT	NTC	41.0 a	0.0002		
SHVT	ACT	31.9 b			
SHVT	MCN	31.7 b			

TCSA:

Increase with Melocon at one site

Leader growth:

- Actinovate increased growth at one site,
- NTC had greatest growth at another

		Terminal shoot growth,			
Site	Treatment	<u>cm</u>			
		<u>value</u>	<u>p-value</u>		
HREC	NTC	11.7 b	< 0.0001		
HREC	ACT	15.4 a			
HREC	MCN	14.6 a			
SHVT	NTC	32.2 a	< 0.0001		
SHVT	ACT	25.5 b			
SHVT	MCN	27.2 b			

TCSA:

• Increase with Melocon at one site

Leader growth:

- Actinovate increased growth at one site,
- NTC had greatest growth at another

Terminal shoot growth:

Inconsistent results

Site	Treatment	Kg fruit/tree		
		<u>value</u>		<u>p-value</u>
HREC	NTC	1.27		0.9445
HREC	ACT	1.23		
HREC	MCN	1.24		
SHVT	NTC	3.67	ab	0.0016
SHVT	ACT	4.37	a	
SHVT	MCN	3.17	b	

TCSA:

Increase with Melocon at one site

Leader growth:

- Actinovate increased growth at one site,
- NTC had greatest growth at another

Terminal shoot growth:

Inconsistent results

Kg fruit/tree

- No effect @ HREC
- Actinovate had greater crop yield than Melocon at S Hero

Changes in soil community

Working Lands Enterprise Fund

USDA Federal State Market Improvement Program

Industry surveys:

- Grower & Cidery
- Production and utilization capacity
- Price points

	Mean percent	Median percent	Standard deviation
On the farm sold as fresh fruit	33.6	32.5	31.4
On the farm sold as juice	11.5	3.0	18.1
To wholesalers	18.4	0.0	32.2
Directly to stores	15.3	0.0	28.3
To sweet cider processers	7.6	0.0	17.4
To cideries	8.4	0.0	21.3
Other	5.1	0.0	16.7

Working Lands Enterprise Fund

USDA Federal State Market Improvement Program

Industry surveys:

- •Grower & Cidery
- Production and utilization capacity
- Price points

		Price	receive	id (\$US)	Targ	et price	(\$US)	Average price difference in \$US
Apple type	n	Mean	Min	Max	Mean	Min	Max	
Specialty clder/bittersweet	2	8.25	4	12.5	13.7	10	17.5	-5.45
Dessert variety tree pick	2	5.75	4	7.5	8.0	6.0	10.0	-2.25
Dessert variety cull	1	7.5	7.5	7.5	7.5	7.5	7.5	0
Dessert variety drop	1	-	-	-	7.5	7.5	7.5	-

Working Lands Enterprise Fund

USDA Federal State Market Improvement Program

Orchard and cultivar data

- Production by cultivar & orchard system
- •Cultivar juice characteristics

Cultivar	Bushels / acre	Firmness (psi)	Starch index	Soluble solids ("brix)
Cortland	672	15.9	3.7	10.3
Empire	932	18.8	5.0	12.8
Idared	1221	17.4	4.0	10.6
Jonagold	338	16.0	7.4	12.6
Liberty	282	17.5	6.0	11.0
Macoun	705	15.4	5.0	10.9
McIntosh	1134	15.2	4.6	11.6
Paula Red	435	17.1	3.4	11.3

Working Lands Enterprise Fund

USDA Federal State Market Improvement Program

Orchard and cultivar data

- Production by cultivar & orchard system
- •Cultivar juice characteristics

	Soluble solids		Malic acid	Total	YAN
Cultivar	(°brix)	pН	(mg/l)	polyphenols (%)	(mg/l)
Ashmead's Kernel	17.6	3.25	10.40	0.075	262.4
Commercial blend	12.2	3.40	5.91	0.037	58.5
Cortland	11.2	3.43	4.74	0.047	45.1
Dabinet	13.1	4.13	1.88	0.109	60.6
Esopus Spitzenburg	15.3	3.48	7.10	0.035	113.4
Honeycrisp	12.6	3.52	4.97	0.027	85.0
Idared	10.8	3.29	5.98	0.017	15.5
Jonagold	12.3	3.40	5.12	0.021	38.6
Liberty	11.5	3.45	5.72	0.018	56.7
Macoun	11.7	3.47	4.17	0.021	65.1
McIntosh	11.7	3.25	5.48	0.036	30.1
PaulaRed	11.0	3.40	4.45	0.050	30.4
Topaz	12.4	3.35	9.86	0.056	16.1
Wickson	13.9	3.40	11.94	0.018	53.3

Working Lands Enterprise Fund

USDA Federal State Market Improvement Program

Fermentation characteristics

- Ciders fermented at three commercial cideries
- Spring 2015: evaluation of finished ciders to characterize cider quality

CIDER Act (H.R. 600)

- •Amend the section of the tax code to allow cider makers to produce cider using the natural products available without the possibility of facing increased tax liability
 - increase the carbonation level for hard cider, thereby meeting customer expectations,
 - include pears in the definition of "hard cider," and
 - align the alcohol-content standard for hard cider with the natural sugar content of apples.

2015 Projects

E-IPM Outreach Program

SARE Apple Replant Disease

Cider Apple Production

- In-depth financial analysis of costs to produce cider apples in VT
- Increased replication across orchards
- Phenology data
- Developing database of characteristics of apple cultivars used for hard cider

Biopesticide management of cedar apple rust on scab-resistant cultivars

2015 Undergraduate & Continuing Education Courses

PSS 209 Sustainable (Vegetable) Farm Practicum

•Instructors: Susie Walsh Daloz and Terry Bradshaw

•Dates: May 18-August 5, 2015 (On-line coursework is from May 18-27 and August 3 - 5; On-farm practicum is MW from June 1-July 29)

PSS 195 Sustainable Orchard and Vineyard Management

•Instructor: Terry Bradshaw

•Dates: TR, June 15 - July 10, 2015

2015 UVM Apple Program

Terence Bradshaw

UVM Tree Fruit & Viticulture Specialist College of Agriculture & Life Science

Ann Hazelrigg

Director, UVM Plant Diagnostic Clinic UVM Extension

Sarah Kingsley-Richards Jessica Főster

Research Technicians

Dr. David Conner

Agricultural Economist UVM Dept Community Dev & Appl Economics

Florence Becot

Research Specialist, CDAE

Funding acknowledgements:

Vermont Working Lands Enterprise Fund

Apple Market Optimization and Expansion through Value-Added Hard Cider ProductionUSDA FSMIP Program

USDA FSMIP

Orchard Economic Assessment to Support Vermont Hard Cider Production

USDA Extension Integrated Projects Program

The Transdisciplinary Vermont Extension IPM Program Addressing Stakeholder Priorities and Needs for 2013-2016

Northeast SARE

Biological Management of Apple Replant Disease

Vermont Agricultural Experiment Station

Vermont Tree Fruit Growers Association

Vermont Hard Cider Company

Monsanto BioAg

