Apple Arthropod Management & Pesticide Update - Early Season

Art Agnello Dept. of Entomology, NYS Agricultural Experiment Station, Geneva

EUROPEAN RED MITE Panonychus ulmi

Adult female

Overwintering eggs

Some Guiding Principles of Mite Management

• Can be considered a 2-phase process:

- Early season program, against overwintering generation
- Summer program, against new populations

• Usually, a <u>preventive</u> approach (i.e., without need to sample) is advised for early season, depending on previous year's pressure:

- delayed dormant oil, an ovicide-larvacide

(Apollo/Savey/Onager/Zeal) applied prebloom or (with addition of Agri-Mek) after petal fall.

• For summer populations, scouting/sampling advised to pick up rapid mite increases on new foliage, especially during early summer when trees are most susceptible.

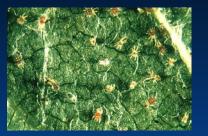
- Thresholds increase as the summer goes on:

June: 2.5 ERM/leaf; July: 5.0 ERM/leaf; Aug: 7.5 ERM/leaf - When numbers of motiles (everything but eggs) reach or approach threshold, a "rescue" material can be recommended:

Acramite, Apollo, Carzol, Envidor, Kanemite, Nexter, Onager, Portal, Savey, Vendex, Zeal

Effectiveness of Prebloom Oil Through Time

- Winter eggs of ERM become more susceptible to killing with oil as hatch period approaches.
- For effective control, want 95% kill of eggs; can be achieved with adequate spray coverage.
- 100 (acceptable) to 300 (preferred in large trees) gal/A needed.

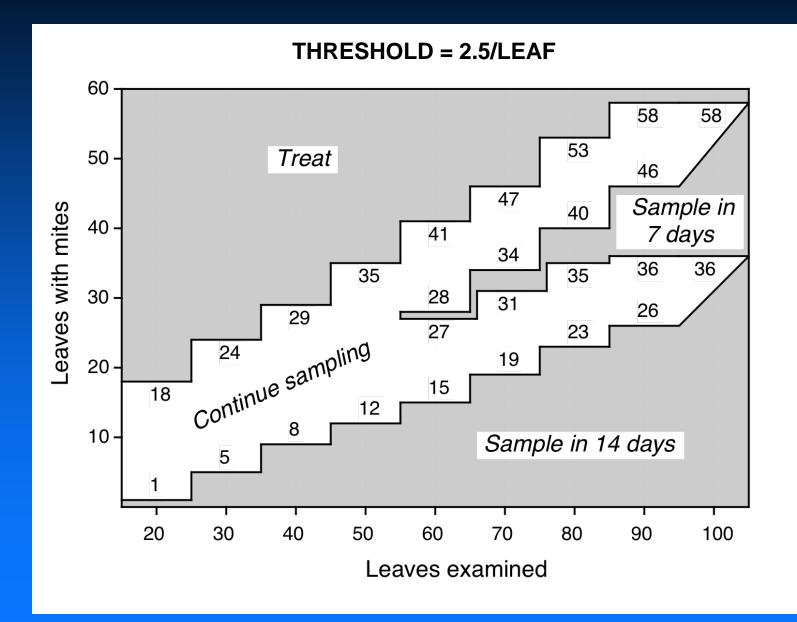

% Oil needed for effective control at different periods (Chapman & Lienk)

Dormant	Silver	Green	1/2" Green	Tight	Pink
	Tip	Тір		Cluster	
6%	4%	3%	2% 1.5%	1%	1%

EUROPEAN RED MITE LIFE HISTORY

overwintered bases of buds		1st summer eggs	mixed stages; 7-8 generations	1st winter eggs	
	eggs hatch; nymphs, larva	ie			
Dormant T	C Pink	Petal Fru	lit mid-	E	arly
(Ma	cs)	Fall Se	t June		ugust

EUROPEAN RED MITE



ERM summer motiles

SEQUENTIAL SAMPLING CHART FOR MITES

Managing Mite Resistance

• Because mites have many generations per year, potential to develop resistance is high.

• Resistant mites are theoretically "less fit" or weaker than susceptible individuals

• Have shorter lives:

- > physically smaller or weaker
- > produce fewer offspring
- > take longer to develop
- > mating success is lower

• In the absence of competition from susceptible individuals, resistant pests rapidly multiply.

KEY TO MANAGEMENT OF RESISTANCE TO INSECTICIDES AND MITICIDES:
 Reduce Selection Pressure that Favors the Survival of Resistant Individuals

Potential Tactics for Reducing Selection Pressure for Miticide Resistance

- Treat different generations with materials of different chemical classes.
- Use nonchemical control tactics where possible (e.g., biological control; predators).
- Good miticide stewardship:
 - Apply only when necessary
 - Use correct dosages
 - Obtain adequate coverage
 - Optimize timing

Choosing a Miticide

1992 Options

- oil
- Morestan (prebloom)
- Carzol

- Omite
- Vydate
- Kelthane

Many more options today, but important to keep in mind how they <u>may/may not</u> differ

[1A] Carzol: carbamate; acetylcholinesterase inhibitor [12B] Vendex: disrupts ATP formation

[6] Agri-Mek: GABA site; affects CI-ion channel; inhibits nerve transmissions

[25] Acramite: GABA site (probably); contact activity

[10A] Apollo/Savey/Onager: growth inhibitors [10B] Zeal: growth inhibitor

[20B] Kanemite: METI (mitochondrial electron transport inhibitor), Site II [21] Nexter/Portal: METI (mitochondrial electron transport inhibitor), Site I

[23] Envidor: inhibitor of lipid synthesis

IRAC - Insecticide Resistance Action Committee

• International organization committed to prolonging the effectiveness of pesticides at risk for resistance development.

• The number codes represent Mode of Action Classification Groups.

• An arthropod population is more likely to exhibit cross-resistance to materials within the same group.

BIOLOGICAL CONTROL OF EUROPEAN RED MITE

Major species Phytoseiidae: *Typhlodromus pyri Amblyseius fallacis* Stigmaeidae: *Zetzellia mali*

San Jose Scale

Two generations per year in NY

- Crawlers emerge about mid-June and in early August in WNY
- Can be timed by using DD accumulations:
 - 1st gen: 500 DD (base 50°F) from March 1, or 310 DD after 1st adult catch
 - 2nd gen: 1450 DD from March 1, or 400 DD after 1st adult catch
- Can monitor for crawlers using tape traps on scaffold branches

San Jose Scale Treatment Considerations

- Problem populations more common in larger, poorly pruned standard size trees with inadequate spray coverage
- Early season sprays help prevent SJS establishment
 - Oil at dormant to 1/2-inch green
 - ½-inch Green to Tight Cluster:
 - Oil
 - Lorsban 4EC or Supracide
 - Esteem (IGR) plus oil
 - Centaur (IGR)

- Early season pruning to remove infested branches, open up canopy for better coverage
- Well-timed summer sprays at 1st and peak (7-10 days later) crawler activity: Esteem, Centaur, OPs, Provado, Movento* (PF-1st cover)

Movento 240SC

Active Ingredient: Spirotetramat

- Tetramic acid insecticide
- 2-way systemic activity, moves to all areas of the plant, including new shoot, leaf and root tissues
- Primary mode of action: ingestion
- Lipid biosynthesis inhibitor active against immatures; also, reduced egg-laying and offspring survival when adults treated
- Primary targets: sucking insect pests
 - Scales, Aphids, Pear Psylla, Mealybugs, Thrips
- Short PHI (7 days) and REI (24 hr)
- Favorable environmental profile
 - minimal risk to beneficial insects

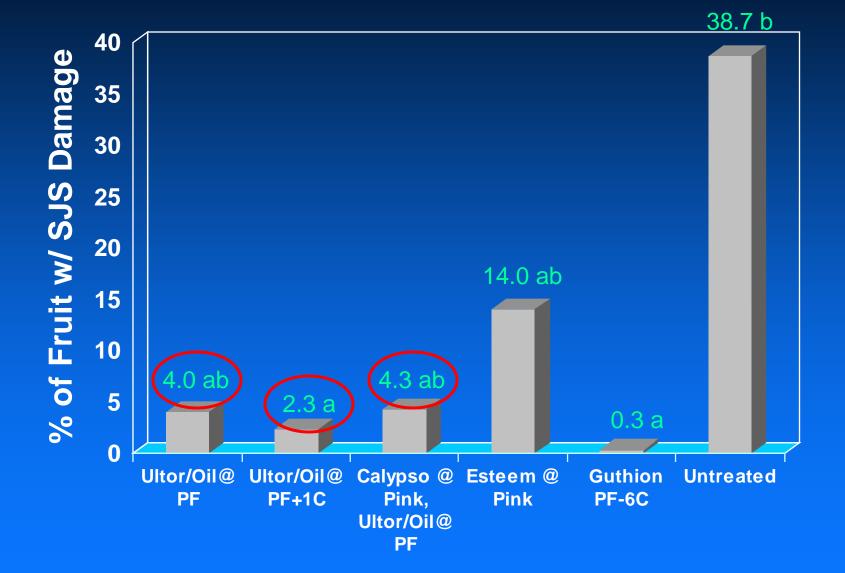
Treatments

H. Reissig & D. Combs, 2007

- 1.
 Ultor 150SC 14.0 oz/A + 1.0% Oil
 @ Petal Fall

 Belt 480 SC
 @ 2C-6C
- 2. Ultor 150SC 14.0 oz/A + 1.0% Oil
 @ Petal Fall + 1C

 Belt 480 SC
 @ 2C-6C
- 3.
 Calypso 4F 3.0 oz/A
 @ Pink


 Ultor 150SC 14.0 oz/A + 1.0% Oil
 @ Petal Fall

 Belt 480 SC
 @ 2C-6C
- 4. Esteem 35WP 5.0 oz/A
 @ Pink

 Belt 480 SC
 @ 2C-6C
- 5. Guthion 50WSP 1.5 lb/A
- 6. Untreated Check

@ Petal Fall-6C

Damage from SJS at Harvest

TARNISHED PLANT BUG

Adult

Damage to fruit

Older nymph

Tarnished Plant Bug

Monitoring Methods

- Can use white sticky-board traps, but generally very sensitive
- Most injury caused by Pink

Threshold

Prebloom-Petal Fall: 3 bleeding sites/tree, 5 adults by tight cluster or 7 by late pink stage

Control Tactics

- Insecticides (advisability questionable): pyrethroids*, Beleaf
- Good orchard floor management to reduce alternate weed hosts essential

Beleaf 50SG (Flonicamid) - FMC

• New Chemistry, new mode of action

- Pyradinecarboxamide "selective feeding blocker"
- Efficacy against aphids and plant bugs
- Not yet tested in NY, but NJ reports good results against green peach aphid and TPB in peaches
- Label also lists rosy apple aphid, green aphids, and woolly apple aphid
- Low toxicity to beneficial arthropods
- Labeled in pome fruits and stone fruits
- REI = 12 hrs; PHI = 21 days

Plum Curculio

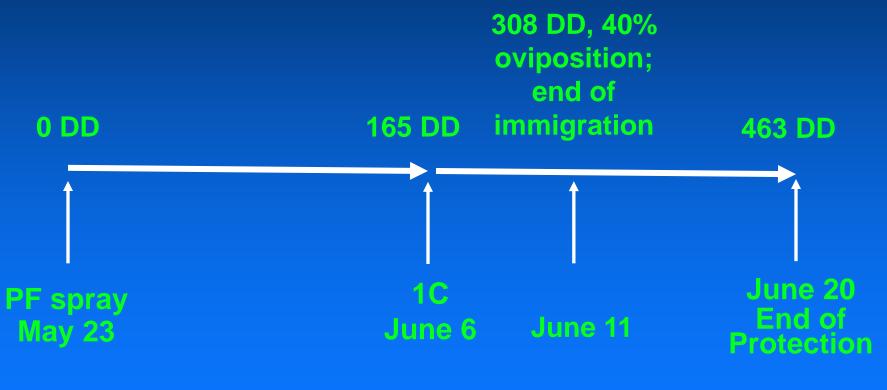
Monitoring Methods

After 1-2 warm (60° F) evenings following petal fall, egg laying will start

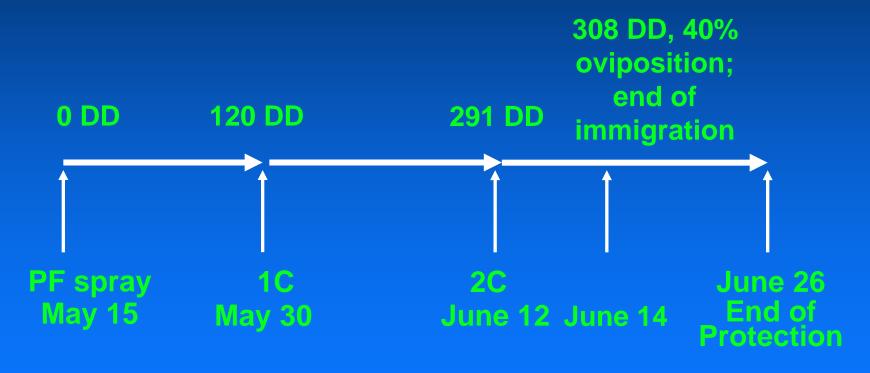
Threshold

Appropriate weather/phenology conditions

Control Tactics


Guthion, Imidan, Actara, Calypso, Avaunt, Pyrethroid Surround an option for organic growers. Can stop sprays at 308 DD (base 50° F) after petal fall of apples [Warm spring: 2 sprays; cold spring: 3 sprays]

PLUM CURCULIO OVIPOSITION MODEL


- Experimentally derived from modeling cumulative Plum Curculio oviposition and DD accumulation (base temp 50° F) after petal fall.
- Model assumes that fruit requires protection from petal fall until about 40% of the cumulative oviposition is completed (308 DD)
 → corresponds with the end of their immigration into orchard.

EXAMPLE OF PLUM CURCULIO MODEL PREDICTIONS IN GENEVA FOR THE 2005 SEASON

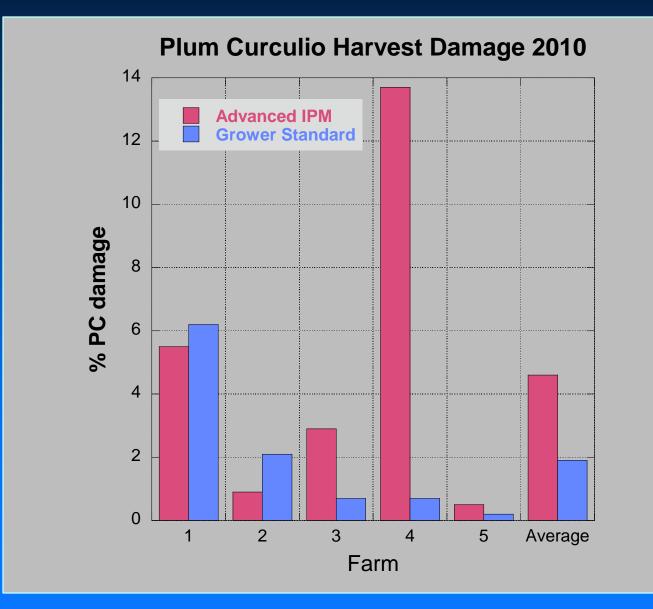
2 Total sprays needed

EXAMPLE OF PLUM CURCULIO MODEL PREDICTIONS IN GENEVA FOR THE 2006 SEASON

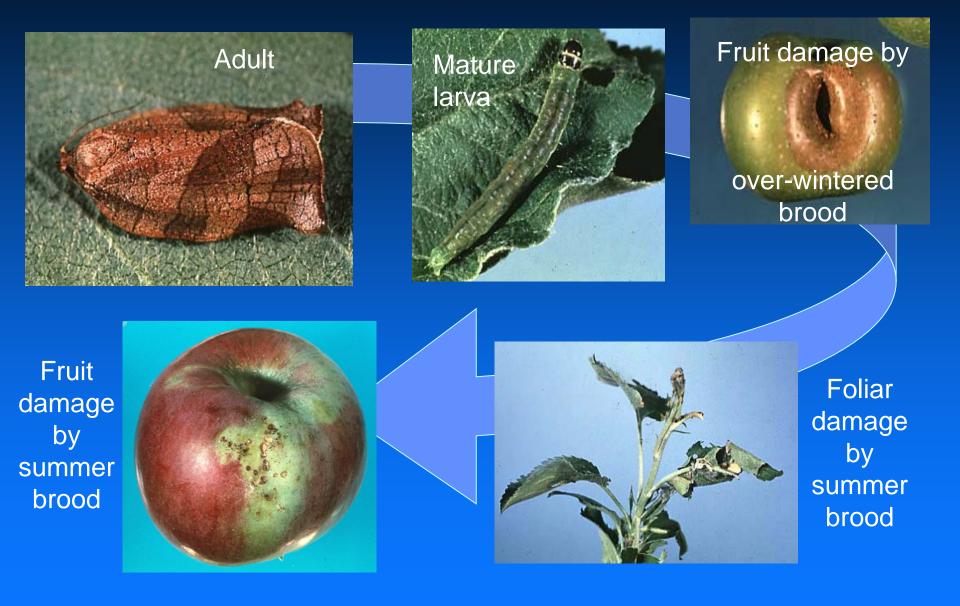
3 Total sprays needed

WHY DOES THE MODEL WORK?

- Indigenous and early immigrating PC in treated orchards are killed by the petal fall and any subsequent sprays.
- After 40% oviposition, PC immigration into orchards and movement between trees is nearly over.
- Protection until the end of the oviposition cycle therefore not necessary.

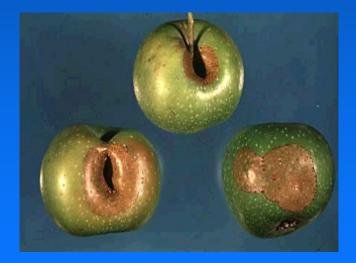

"Advanced IPM" Tactics for Plum Curculio Odor-Baited Trap Tree Approach

- Trap Trees set up around perimeter prior to Petal Fall
- Baited with olfactory attractant (benzaldehyde) and aggregation pheromone
- Full block spray at PF; later sprays applied to trap trees only (according to degree day oviposition model)
- Fruit damage assessments in Trap Tree and nearest neighbor trees at harvest



Results

Obliquebanded Leafroller, *Choristoneura rosaceana*


Why OBLR Doesn't Fit the Mold

 'Terrible Tortricid' - Same family as codling moth, oriental fruit moth, lesser appleworm, grape berry moth

- Prefers foliage to fruit
- Overwinters as a larva, not as a pupa
- Causes feeding damage much earlier than other worms
- Life cycle is out of sync with most other pests
- Has a great capacity to develop insecticide resistance

OBLR Overwintered Brood

- Overwinters as 1st or 2nd instar on tree or in protected location nearby (spins hibernaculum)
- Larva becomes active in spring when buds open
- Ties leaves together to conceal itself
- Often found in blossom cluster, even inside flower
- Feeds on newly set fruit buds; most abort, those that don't are misshapen with large, deep cavities
- Traditionally causes 2-3% damage, often not noticeable; becoming more of a problem.

Control of Overwintering OBLR Larvae - Is it Economically Jusitified?

- Most fruit damaged before petal fall drops before harvest
- OW-OBLR damage at harvest is usually <1%
- Potential benefits from controlling early generation
 - Reduction of early season fruit damage
 - Possible reduction of subsequent damage from the summer generation
- Decisions for Controlling Overwintering OBLR
 - Sample for larvae at bloom
 - Base decision on past history of OBLR infestations

Insecticide Efficacy against Overwintering OBLR

- Recommended products:
 - Proclaim
 - Rimon
 - Intrepid
 - B.t.s
 - Altacor/Belt/Delegate possible, but probably better to save for internal Leps in summer
 - Lorsban 75WG still labeled for PF; suitable for susceptible populations
- Usually one spray (PF) as good as two (Pink & PF)
- Fruit damage usually reduced by 40-60%
- Newer IPM-compatible insecticides may have sub-lethal effects on surviving adults.

Implications for Future Management of OBLR with Soft Insecticides

- Preliminary research suggests "soft insecticides" are not necessarily less toxic to beneficials helping to control OBLR than are conventional materials.
- OBLR adults appear to be very mobile & capable of re-infesting nearby clean orchards during the summer.
- Therefore, stable insecticide control cannot be maintained in relatively small areas, even after multiple seasons of treatment with soft materials.

Delegate 25WG (Spinetoram) - Dow AgroSciences

• Spinosyn (same class as SpinTor)

- Chemically modified spinosad to be more active and effective against a broader range of insects
- Efficacy against internal feeding Lepidoptera such as oriental fruit moth & codling moth; plus leafrollers
- Additionally, thrips and psylla (rec. use of adjuvant)
- ["Suppression" against plum curculio and apple maggot]
- Acts by disrupting insect nerve function
- Nontoxic to birds, fish, aquatic invertebrates, and most beneficial arthropods
- Labeled in pome fruits and stone fruits
- REI = 4 hrs; PHI = 7 days

Proclaim 5SG

(Emamectin benzoate) - Syngenta

- Avermectin (2nd generation); related to Agri-Mek
- Labeled in pome fruits (restricted use)
 - Primary target pests are leafrollers, leafminers and fruitworms
 - "Suppression of oriental fruit moth, codling moth, pear psylla, and spider mites"
 - Translaminar, quickly absorbed into leaf tissue
 - Recommend adjuvant (HMO, or non-ionic surfactant)

• REI = 48 hrs; PHI = 14 days

Altacor 35WG

Active Ingredient: Rynaxypyr

- Novel anthranilic diamide insecticide
- Translaminar activity
- Primary mode of action: ingestion
- Affects insect ryanodine receptors (calcium regulation), causes paralysis
- Primary targets: Lepidoptera OBLR, Codling Moth, Oriental Fruit Moth, European Apple Sawfly, Leafminers
- Short PHI (5 days) and REI (4 hr)
- Favorable environmental profile
 - low impact on beneficial insects
 - does not flare mites or secondary pests
 - low toxicity to bees, birds, fish and mammals

Belt 480SC

Active Ingredient: Flubendiamide

- Novel phthalic acid diamide insecticide
- Translaminar activity, strong rainfast characteristics
- Primary mode of action: ingestion
- Affects insect ryanodine receptors (calcium regulation), causes cessation of feeding, paralysis
- Primary targets: Lepidoptera OBLR, Codling Moth, Oriental Fruit Moth, Leafminers
- Short PHI (14 days) and REI (12 hr)
- Favorable environmental profile
 - minimal risk to beneficial insects, honey bees

Possible Seasonal Programs Using Reduced-Risk or OP-Replacement Products

 Rosy Apple Aphid: Actara, Assail, Calypso, Beleaf Leafminers: Actara, Altacor, Assail, Calypso

Petal Fall

- Plum Curculio: Actara, Avaunt, Calypso
 Internal Leps: Assail, Avaunt, Calypso, Delegate, Intrepid, Rimon, Altacor, Belt
- OBLR: B.t., Delegate, Intrepid, Proclaim, Rimon, Altacor, Belt
- European Apple Sawfly: Actara, Assail, Avaunt, Calypso, Altacor

Summer (to be continued...)

