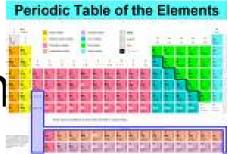

Grapevine Nutrition

Mark L. Chien


Penn State Cooperative Extension

Lancaster, PA

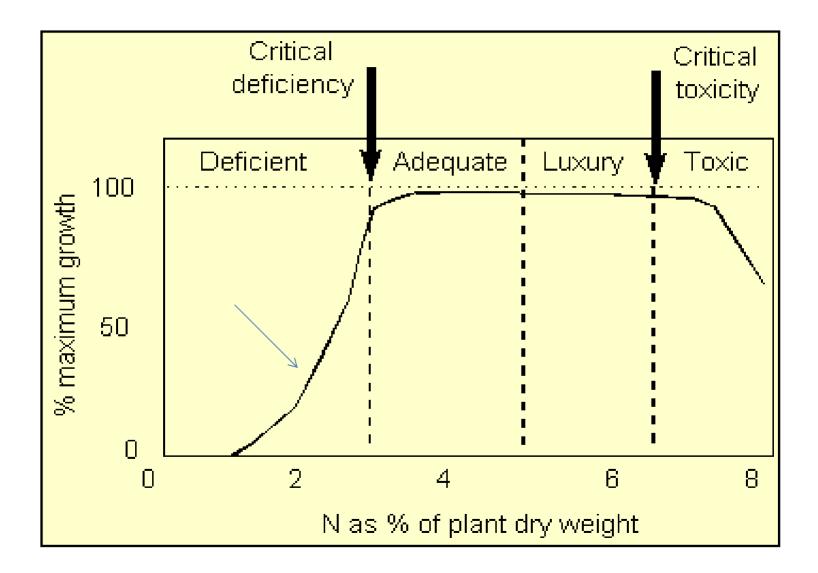
mlc12@psu.edu

Goals of Vine Nutrition

- Maintain a healthy, productive, sustainable vine
- Getting fruit and wood fully ripe as soon as possible
- Agronomy vs. Viticulture
- With fertilizers, more is not always better
- The special case of "N"
- Promote wine quality through proper nutrition
- Fit these goals into a sustainable viticulture program – do no harm

Vine Balance and Size

- Create a small to moderate size vine
- Balance amount of foliage and crop
- + better light, air and spray penetration into interior of canopy, improved bud fruitfulness, less disease, lower management costs, riper fruit, easier to manage fruit zone, cold hardiness
- Lots of shade, increased humidity in canopy interior, more disease, increased MPs, more labor and gas (shoot positioning, hedging, thinning, pruning, etc), bull canes, higher pH wines (K+)



Different amounts of vine size and balance: which one applies to you?

Nitrogen levels will affect wine quality

Nutrition begins before the first vine is Site assessment

- - Soil chemistry testing
 - Find a reliable lab with viticulture experience
 - Interpreting the data
 - Sensory assessment of the field
 - Above: Vegetation and topography
 - Below: color, texture and aromas

Essential Plant Nutrients for Growth

Derived from soil and/or fertilizer

<u>Macronutrients</u>

Primary:

- N Nitrogen
- P Phosphorus
- K Potassium

Secondary:

- S Sulfur
- Mg Magnesium
- Ca Calcium

Micronutrients

- Zn Zinc
- B Boron
- Fe Iron
- Mn Manganese
- Cu Copper
- Mo Molybdenum
- Ni Nickel
- CI Chlorine

Obtained from water and air: Carbon, Hydrogen and Oxygen

ELEMENTS MOST ESSENTIAL TO PLANT STRUCTURE AND ACTIVITIES.

ACTION

STRUCTURE

MEMBRANES Calcium Manaanese Boron CELL WALLS Calcium Maanesium Iron Zinc Copper Boron PROTEIN Nitrogen Phosphorus Potassium Sulfur Manganese Zinc Copper Molybdenum NUCLEIC ACIDS Nitrogen Phosphorus Boron ATP, GTP Phosphorus OILS Phosphorus

CHLOROPHYLL Nitrogen Sulfur Magnesium

Manganese Iron Molybdenum

ENZYMES Nitrogen Potassium Calcium Iron Maanesium Manganese Zinc Copper Cobalt Nickel CARBOHYDRATES Phosphorus Potassium Boron Molybdenum ORGANIC ACIDS

Potassium HORMONES Calcium Iron

Zinc

PHOTOSYNTHESIS Phosphorus Potassium Maanesium Manganese Copper

CO₂ FIXATION Magnesium

NITROGEN ABSORPTION Potassium

RESISTANCE Potassium

CELL DIVISION Potassium Magnesium

CELL ELONGATION Calcium Copper Boron

STOMATA OPEN & CLOSE Potassium

TRANSPIRATION Potassium

ph Regulator of Cell Sap Zinc

RESPIRATION Sulfur Copper

NITROGEN FIXATION Molybdenum

ROOT GROWTH Calcium Zinc Copper

LEAF GROWTH Sulfur Calcium Magnesium Iron Zinc Copper

Nutrition Monitoring: 3 parts

- Scout for visual symptoms of deficiency and toxicity. See and observe
- Soil tests pre-plant and every 3-5 years
- Tissue testing every 1-2 years

All Elements are not created equal...

The ones you really care about:

The ones you sort of care about:

- K
- Mg
- Ca
- B
- PFeMn

Мо

• Zn

Soil Testing

- When: before planting and every 3-5 years
- Or when visual symptoms indicate a problem
- Supplement with petiole tests in established vineyards. Use both, not one or the other.
- What to test for: macro and micro nutrients, pH, cation exchange capacity, base saturation, organic matter (also texture if offered)
- The lab and method matter
- Interpreting the results correctly is critical!

Report Number:	
R05305-0053	
Account Number	

35930

A&L Eastern Laboratories, Inc. 7621 Whitepine Road Richmond, Virginia 23237 (804) 743-9401 Fax No. (804) 271-8446 Email: office@al-labs-eastern.com

Send To: GEORGE D TIBONI DESIGN MGMT Gro 41 W MAIN ST CLINTON, NJ 08809

Grower: KARAMOOR FARM

Submitted By: GEORGE TIBONI

SOIL ANALYSIS REPORT

Analytical Method(s):

			Organ	ic Matt	er		Pho	sphor	US		Potas	alum	Magn	eslum	C	alcium	ř.	Sodiu	m		рН	Acidity	C.E.C.
Sample Number	Lab		%	ENR Ib6/A	Rate	Ava	allable n Rai		Reserv Ipm	e Rate	к ppm	Rate	M ppm	IG Rati	e p	CA pm R	late	NA ppm l	Rate	Soll pH	Buffer Index	H meq/100g	meq/100g
1A	4703	2	1.5	64	L	12	2 V	-			16	VL	180) VH	1	570	м			6.1	6.9	0.7	5.1
1B	4703	1	0.4	40	VL	6	s vi	-			16	VL	225	VH		540	L			5.9	6.8	1.0	5.6
2A	4704	F.	1.0	50	L	10	VI	-			16	VL	150	н	1 0	630	м			6.0	6.9	0.8	5.2
28	470	i	0.5	48	VL	1	5 VI	-			20	VL	245	5 VH		610	м			6.2	6.9	0.7	5.9
3B	470	i	0.4	38	٧L	4	VI	-			17	VL	345	5 VH		750	м			6.6	6.9	0.4	7.1
Sample Number	Percent		nt Base	Saturai	lon		Nitr	ate	Su	ifur	Z	inc	Manga	nese	In	n	Cop	pper	Bor	n	Soluble	Chioride	Aluminur
	к %	Mg %	Ca %	Na %		Н %	NOS	-N Rate		04-S Rate		N Rate	M	Rate	F	E Rate	C		B		Salts ms/cm Rate	CL ppm Rate	AL ppm Rate
1A	0.8	29.5				13.7	1	VL	10	L	1.6	L	60	VH		VH	0.7	L	0.3			pp	
1B	0.7	33.7	48.5			17.2			41	VH	0.6	VL	16	М	84	VH	0.2	VL	0.2	VL			
2A	0.8	23.8	60.0			15.4	1	VL	14	L	1.9	L	81	VH	86	VH	0.7	L	0.3	VL			
2B	0.9	34.9	52.1	+		12.1	1	VL	21	м	0.9	VL	28	н	75	VH	0.3	VL	0.3	٧L			
3B	0.6	40.6	52.9			5.9		-	24	м	0.5	VL	10	М	74	VH	0.2	VL.	0.2	VL			

Values on this report represent the plant available nutrients in the soil. Rating after each value: VL (Very Low), L (Low), M (Medium), H (High), VH (Very High). ENR - Estimated Nitrogen Release: C.E.C. - Cation Exchange Capacity. Explanation of symbols: % (percent), ppm (parts per million), loxiA (pounds per acre), msicm (milli-mbos per certámeter), meg/100g (milli-equivalent per 100 grams). Conversions: ppm x 2 = los/A, Soluble Salts msicm x 640 = ppm.

This report applies to the sample(s) tested. Samples are related maximum of third data start testing. Bol Analysis empaned by ALL EASTERN LABORATORIES, Inc. by: Jaw Ch.

Paul Chu, Ph.D.

	1 8 5 5		Alartic antron is we Martic antrony is we for any wegable th	(BMIACK) Dollação el e Montpoliegia	T U					
SOIL TEST	REPORT F	OR:		ADDITIONAL COPY TO:						
236	Y S OSWALE S. WHITEOA IZTOWN P	AK ST	an Andrive tradition of 1 A A A A A A A A A A A A A A A A A A A	i dase int ili Standings	dag again ngangangan	n ios o seit nag stalga naminig via	er sin open de ser en ser en en se de ser de ser en ser en en se de ser ser en ser en ser en			
DATE	LAB #	SERIAL #	COUNTY	ACRES	FIE	LD ID	SOIL			
04/17/2007	S06-30431	60603	Lehigh	ld-g						
SOIL NUTR Soil pH Phosphate Potash Magnesium Calcium	(P ₂ O ₄) (K ₂ O) (MgO) (CaO)	6.1 779 Ib/A 230 Ib/A 637 Ib/A 2671 Ib/A	Below Optimum	Optin	num	Abo	ve Optimum			
Limestone a		- ORAT ES								
	mestone (c	calcium carbonate equi			agnesium		NONE			
			Phoenhote (D	0.1		D 1	(V O)			
Nitrog	gen (N):		Phosphate (P	0,):		Potash	(K,O):			

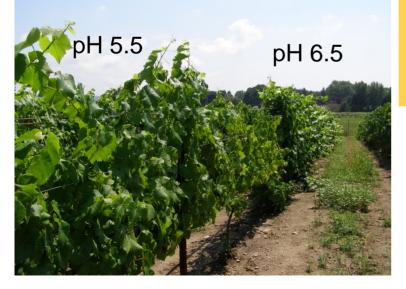
75 lb/A

MESSAGES

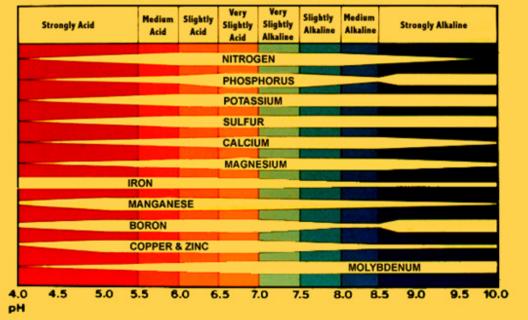
Grape cultivar name or type was not included in the information supplied by the grower. Because of this, lime recommendations are calculated to bring soil to a pH of 6.0. American grapes (juice or table such as Concord and Niagara) grow best at a soil pH of 5.5 while vinifera and French Hybrid grapes (wine grapes such as Cabernet Sauvignon, Chardonnay, Chambourcin, Vignoles) generally prefer a soil pH of 6.5.

NONE

110 lb/A


2424

If grapes are established do not apply lime, if recommended, unless pH is less than 4.5 for American grapes or less-than 6.0 for vinifera and French Hybrid grapes. Apply no more than one ton/acre every twelve months to avoid potassium deficiency. If growth is excessive, reduce nitrogen rate by half or omit entirely.


ABOI	RATORY	RESULTS	5:	- Same	C. M. B. K. C.	NTATE /	a final	The state		Ор	tional Tests	:
¹ pH	² P lb/A	Exch	angeable	e Cations (meq/100g	9	% Saturation of the CEC			Organic	Nitrate-N	Soluble salts
		³ Acidity	² K	² Mg	² Ca	'CEC	K	Mg	Ca	Matter %	ppm	mmhos/cm
6.1	340	5.1	0.2	1.6	4.8	11.8	2.1	13.6	40.9	of the set	1 1127 400	

Soil pH: why it matters a lot...

- pH and its relation to vine size
- Cornell example
 - pH 5.5 vs 6.5
 - Effects on vine size and wine

How Soil pH Affects Availability of Plant Nutrients

pH is the measure of acidity to alkalinity. Soil pH aff nutrient uptake and microbial activity. Vines will gro from pH 4.0-8.5, but below 5.5 and above 8 will depress yields and create vine problems. pH will of drift down with use of fertilizers and sulfur.

Adjusting Soil pH

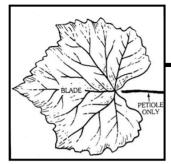
- Best to do it with a clean and open field
- Remember: soils will progressively acidify with normal farming practices
- Find the right range according to viticulture and wine making goals and pH status
- Low pH problems with AI toxicity and P deficiency
 - Adjust with lime or gypsum (1000x more soluble)
 - Lime also adds Ca and Mg (dolomitic)
 - Incorporate as deep as possible
- High pH can affect vine growth
- Recommended range: 5.5-7.0

New Vines: easy does it

Most soils in Eastern N.A are fertile How much growth is enough? Wait and see approach Read the tests: how much organic matter? 3% vines may benefit Small amounts of "complete" fertilizer like 10-10-10 at 20 lbs actual N per acre. Apply to vine not broadcast. Apply correctly as a slow release to kick-start vine

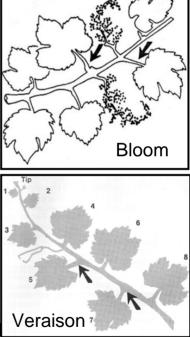
Target values for soil, bloom petiole, and late-summer petiole samplings

					Late-sun	nmer
Nutrient	Soil		Bloom pe	etiole	petio	le
Nitrogen	Z		1.2 - 2.2	%	0.8 - 1.2	%
Phosphorus	20 - 50	ppm	0.17 - 0.30	%	0.14 - 0.30	%
Potassium	75-100	ppm	1.5 - 2.5	%	1.2 - 2.0	%
Calcium	500 - 2000	ppm	1.0 - 3.0	%	1.0 - 2.0	%
Magnesium	100 - 250	ppm	0.3 - 0.5	%	0.35 - 0.75	%
Boron	0.3 - 2.0	ppm	25 - 50	ppm	25 - 50	ppm
Iron	20	ppm	30 - 100	ppm	30 - 100	ppm
Manganese	20	ppm	25 - 1000	ppm	100 - 1500	ppm
Copper	0.5	ppm	5-15	ppm	5 - 15	ppm
Zinc	2	ppm	30-60	ppm	30 - 60	ppm
Aluminum	*< 100	ppm				
Organic matter	3 - 5	%				
Organic matter	3 - 5	%				


^z Soil nitrogen is not normally evaluated for vineyards.

Compost: easy does it!

- Easy to get too much of a good thing
 The case of Roth Vineyard
- It must be properly "composted"
- Hot compost can damage vines, especially young ones
- Commercial vineyard compost guide from Penn State at:


http://fpath.cas.psu.edu/compostguide.pdf

Tissue (petiole) Analysis

- Determine vine nutrient status at that moment sample for maintenance and troubleshooting
- Develop a nutrition history for the vineyard
- Factors the may impact tissue analysis include:
 - Crop load
 - Cultivar and rootstock
 - Cultural practices
 - Growing conditions, i.e. stresses on the vine
- When to sample
 - Bloom (May) for N P K
 - Veraison (mid-July to mid-August) for micronutrien Ve
 - Check with your specific lab for bloom or veraison standards

What to look for now

Potassium deficiency

Magnesium deficiency

Potassium Fertilizers

- Potassium chloride (0-0-60)
- Potassium sulfate (0-0-50)
- Potassium-magnesium sulfate Sul-Po-Mag (0-0-22)
- Potassium nitrate (13-0-44)
 - Foliar K applications use sulfate of nitrate forms
 - 6 to 10 lb/100 gal
 - If needed, apply after pollination

Correction of Mg deficiency

- Tissue analysis test of mature vineyard: – Desired bloom-time values of 0.30 - 0.50%
- Example:
- petiole sample shows 0.19 % Mg
 - Immediate foliar application of Epsom salts at 5 lbs/acre in sufficient water to ensure coverage
 - long-term correction by magnesium sulfate application to soil (banded).

Foliar Fertilizers for Grapes

- Most nutrients for grapevines are derived from the soil
- Foliar fertilizers are very soluble fertilizers applied in relatively low quantities
- Generally not satisfactory for supplying N, P, K needs
 - Consider as a supplement only
- Band-aid method: can be used to **temporarily** correct a deficiency
- Particularly useful for micronutrient problems
 - Iron
 - Zinc
 - Boron
 - Manganese

For more information, call 607-255-7654, email nraes@cornell.edu, or visit our web site, www.nraes.org.

Available Fall 2008

Wine Grape Production Guide for Eastern North America

The book will be a comprehensive resource for novice and L experienced growers, as well as crop advisors, service providers, educators, communicators, and students. The book manuscript was prepared by the 16 authors listed below and improved after review by 40 experts from 21 states and Canada.

- The outcomes expected from publishing the book include:
- · improved economic sustainability of eastern vineyards improved vineyard design, operation, and profitability increased demand for supplies and services from support industries
- cultivar selection that considers the local growing
- conditions and winery preferences • improved grape quality through better canopy and crop management
- improved educational programs and college courses · reduced movement of fertilizers and pesticides off the target area

Book Overview

Mine Grape

PRODUCTION GUIDE

for Eastern North America

- 300+ pages - 174 color photos
- 45+ variety descriptions
- Pests of Grapes - 42 tables of useful information - Glossary

Tony Wolf, Virginia Tech, Lead Author and Editor Authors in alphabetical order:

Terry Bates, Cornell University; William Boyd, formerly with Surry Community College; John Boyer, Virginia Tech; Mark Chien, Penn State University; Jeffrey Derr, Virginia Tech; Keith Dickinson, Virginia Cooperative Extension; Gill Giese, Surry Community College; Andrew Landers, Cornell University; Timothy E. Martinson, Cornell University; Douglas Pfeiffer, Virginia Tech; Andrew Reynolds, Brock University (Ontario, Canada); David Ross, University of Maryland; Fritz Westover, Virginia Tech; Wayne Wilcox, Cornell University; Thomas Zabadal, Michigan State University.

Chapter List - Key to Insect and Mite 1. Costs and Returns of Vinevard

- Establishment and Operation 2. Vineyard Site Selection
- 3. Wine Grape and Rootstock Varieties
- 4. Vineyard Design and Establishment
- 5. Pruning and Training
- 6. Grapevine Canopy Management
- 7. Crop Yield Estimation and Crop Management 8. Nutrient Management
- 9. Grapevine Water Relations and Irrigation
- 10. Spray Drift Mitigation
- 11. Disease Management
- 12. Major Insect and Mite Pests of Grapes in the Mid-Atlantic Region
- 13. Vineyard Weed Management
- 14. Wildlife Deterrence
- 15. Grape Purchase Contracts and Vineyard Leases
- 16. Wine Grape Quality: When Is It Time to Pick?

See the other side of this flier for information on sponsoring the book or special pre-printing prices.

Want to know more about vine nutrition? Read these two great books...

ertilisers for wine grapes

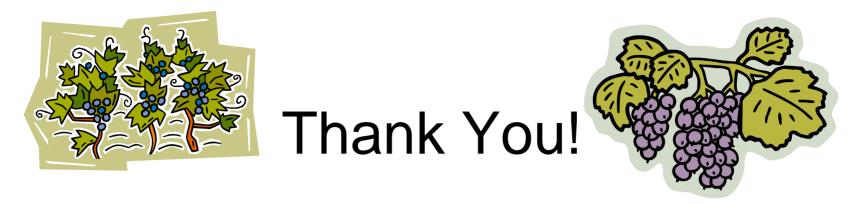
An information package to promote efficient fertiliser practices

3rd Revised Edition

Bulletin 4421 Agdex 242/10 November 2002 ISSN 1326-415X

Magnesium										
inagrioorani		Target Values								
	Soil	Bloom Petiole	Fall Petiole	AND	THEN					
IF <	50 ppm	0.30 %	0.35 %	Acid soil	Adjust soil pH with dolomitic limestone and add MgO to soil as indicated in notes.					
IF <	50 ppm	0.30 %	0.35 %	High K or wet season	High soil moisture (high K mobility) can cause transient Mg deficiency. Monitor and apply maintenance rate of Mg fertilizer if necessary					
IF <		0.30 %	0.35 %	Neutral or Alkaline soil	Deficiency rare in high pH soils. Adjust with Epsom salts if needed					
IF =	50-80 ppm	0.30 – 0.50 %	0.35 – 0.75 %		Skip					
IF >		0.50 %	0.75 %	Dry year	Low K availability in dry soil may inflate Mg readings – monitor					
IF >		0.50 %	0.75 %	Normal year – neutral soil	Skip and monitor for K deficiency					
Notes	Low magnesium availability typically associated with low soil pH. If soil K/Mg ratio is greater than 3, magnesium deficient may develop. Can be aggravated in acid soils with high K application. Adjust with dolomitic limestone in low pH vineyards. Use Epsom salts in neutral and high pH soils. Excessive soil Mg (either natural or fertilizer applied) may cause K deficiency and vine size reduction. Monitor petiole K and Mg.									
Sources	Dolomitic limestone (variable % Mg), most common Epsom salts (magnesium sulfate, 10% Mg) Sulpomag (22% K2O, 11% Mg), has both K and Mg, more expensive									
Rates	Rx: adjust p	H with dolomitic	lime to raise pl	1 (want 100 to 160 lbs/ad I to 6.8. This is likely to b 00 to 600 lbs/acre, deper	ring Mg within recommended range.					
	Foliar applic	ations of Epsom	salts (5 – 10 p	ounds/acre in 100 gallon	s water) can be used for short-term correction.					

Sample from Wine Grape Production Guide for Eastern North American


Other Recommendations

- Before you apply an ounce of fertilizer. STOP. Ask "why am I doing this."
- There is no recipe for nutrition management
- Low to moderate fertility can improve wine quality
- Multiple applications are better than a single large one
- Soil treatments are usually more durable than foliar
- Foliar feed micronutrients and soil treats the macronutrients
- If you already have acidic soils, try to use pH neutral fertilizers
- Most fertilizers, soil and foliar, are best applied between fruit set and veraison, with the exception of B and Zn
- Don't pollute. Manage nutrients as you would pesticides

Soil and Tissue Analysis Labs

- A&L Eastern, Richmond, VA <u>www.al-labs-eastern.com</u>
- Penn State Agricultural Analytical Lab Services <u>http://www.aasl.psu.edu/plant_tissue_prog.html</u>
- Brookside Labs, OH <u>http://www.blinc.com/</u>
- Cornell Nutrient Analysis Lab: http://cnal.cals.cornell.edu/

	es Lab - Windows Internet Explorer			- <u> 2</u> 2
• R http://w	ww.aasl.psu.edu(plant_tissue_prog.html		M 4 K Googe	P -
🔅 🖀 Ag analytical	Services Lab		<u>⊜</u> • ⊡ · ⊕•;	Page - 🕜 Tools - 1
	Agricultural Analytical Services Lab			
ENNSTATE College of	Agricultural Analytical Services Lab			
College of Agricultural Sciences	Sol Plant Manure Compost Biosolida Green Roof Greenhouse			
	Media Media			
lome	Plant Analysis Program			
ab Programs				
lant Submission	Plant tissue analysis is a valuable aid in crop management. Alone, it can be used for making fertilizer recommendations for certain crops, such as tree fruits and			
forms	grapes. For other crops, plant tissue analysis in combination with soil test			
ant Sample Report	information is the recommended approach for diagnosing nutrient deficiencies an	d		
our comple response	determining fertilizer requirements. Samples submitted for tissue analysis will be analyzed for 10 elements: nitrogen, phosphorus, potassium, calcium, magnesium,			
ant Methods	manganese, iron, copper, boron, and zinc. The final report includes the analytical			
ant mittings	results along with an interpretation based on the crop specified. Standard plant			
tant Nutrient terpretations	analysis kits may be purchased from the county offices of the Penn State Cooperative Extension.			
reerprotations	cooptime intration			
Plant Links	Standard Plant Analysis Kit			
ontact the lab	Plant Analysis Kit	\$24.00		
	Faiing reports (cost per page)	\$1.00		
	and we are an an an an an an			
	Individual Analyses			
	The following individual analyses on plant tissue samples are also available. The t	inal		
	report includes the analytical results without interpretations or recommendations. Samples should be submitted directly to the laboratory with the analyses desired			
	specified. Volume discounts are available. Please contact the laboratory.			
	Samples submitted unground*			
	Sample digestion and ICP analysis: <u>Standard</u>			
	-Dry ark: P. K. Ca, Mg, Mn, Fe, Cu, B, Al, Zn, Na. -Microwaye*: P. K. Ca, Mg, Mn, Fe, Cu, B, Al, Zn, Na, S.	\$18.00		
	 Microwawe^w, P. K. Ca, Mg, Mn, Fe, Cu, B, Al, Zn, Na, S. Sample digestion and ICP analysis: <u>Trace</u> 	\$18.00		
	-Dry ark: Cd, Co, Po, Mo, Ni	\$20.00		
	Total nitrogen	\$15.00		
	Complete: Nitrogen plus digestion and standard ICP Analysis	\$24.00		
	-N & Dry azk: N, P, K, Ca, Mg, Mn, Fe, Cu, B, Al, Zn, Na	\$24.00 \$24.00		
	Total silica	\$25.00		
			💮 Internet	± 100% ·

- Dr. Carl Rosen, Dept of Soil, Water and Climate. University of Minnesota
- Mark Greenspan, Advanced Viticulture, Napa, CA
- Dr. Tony Wolf, Virginia Tech and Fritz Westover, Texas A&M University