### <u>UMassAmherst</u>





### UMassAmherst

# Novel Strategies for Managing Insect Pests



#### Dr. Jaime C. Piñero

Stockbridge School of Agriculture & UMass Extension

E-mail: jpinero@umass.edu



| VERDEPRYN <sup>®</sup> 100SL                                                | Crop                                 | Insects                                                                                                                                                                                                    | Fl. Oz. Product                                      | Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|-----------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| INSECTICIDE                                                                 |                                      |                                                                                                                                                                                                            | Per Acre                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| With the active ingredient Cyclapryn®<br>ACTIVE INGREDIENT: Cyclaniliprole* | Pome Fruit<br>(Crop Group<br>11-10)* | Codling moth<br>Obliquebanded<br>leafroller<br>Green fruitworm<br>Redbanded                                                                                                                                | 5.5 to 11.0 fl oz<br>(0.036 to 0.072<br>lb. a.i. /A) | <b>Resistance Management:</b><br>Do not apply VERDEPRYN 100SL INSECTICIDE<br>or other Group 28 insecticide more than 3 times<br>within a single generation of insect pest(s) on a<br>crop.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| RT <sub>25</sub> Phosmet: 51                                                | 70                                   | Leafroller<br>Variegated<br>leafroller                                                                                                                                                                     |                                                      | <b>Restrictions:</b><br>This product has been determined to have a short residual toxicity (RT25) time. Foliar application of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| RI <sub>25</sub> Permethrin: A                                              | /2                                   | Tufted apple<br>budmoth                                                                                                                                                                                    |                                                      | this product is prohibited from onset of flowering<br>until flowering is complete unless: The rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| RT <sub>25</sub> Cyclaniliprole                                             | : 3                                  | budmoth<br>Spotted tentiform<br>leafminer<br>Western tentiform<br>leafminer<br>White apple<br>leafhopper<br>European apple<br>sawfly<br>European corn<br>borer<br>Oriental Fruit<br>moth<br>Western flower |                                                      | is limited to 0.036 to 0.054 lbs. a.i./A and the<br>application is made in the time period between 2<br>hours prior to sunset and 8 hours prior to sunrise.<br>[In California no more than one application<br>may be made from the onset of flowering until<br>flowering is complete. Applications must be<br>made when bees are not foraging, adhering to<br>the above restrictions.]<br>For dilute sprays, if higher spray volumes are<br>desired for improved coverage, do not exceed<br>the maximum rate of 0.072 lb ai/A/application.<br>Make no more than 3 applications per year.<br>Do not exceed 11 fl. oz. (0.072 lb a.i./A) per |  |  |





**KEY COMPONENT: STRONG ATTRACTANTS (e.g., pheromones, plant volatiles)** 

## Effective commercial lures are available for some pests

|                     | Pest                 | Semiochemical   | Uses                            | Level of<br>adoption |  |
|---------------------|----------------------|-----------------|---------------------------------|----------------------|--|
|                     | Plum curculio        | Benzaldehyde +  | Monitoring (trap tree)          | None                 |  |
|                     |                      | grandisoic acid | Control (bomb tree)             | None                 |  |
|                     | Apple maggot fly     | Faampanant      | Monitoring                      | Low                  |  |
|                     |                      | blend           | Control (perimeter<br>trapping) | None                 |  |
| Ει                  | uropean apple sawfly | None            |                                 |                      |  |
| Tarnished plant bug |                      | None            |                                 |                      |  |



# **Novel IPM strategy 1:**

Developing a permanent, low-cost, trap cropping system for multiple apple pests via *multi-cultivar grafting* 

Research in collaboration with Jeremy Delisle (UNH Extension)



## **Developing a multi-stage IPM system for plum curculio (PC)**

Benzaldehyde +

grandisoic acid

trees kill ;

atodes

PC larvae in soil



PC-infested

apples drop to

the ground

85-90% reduction in # of PC larvae in the soil



## Attract-and-kill (AK) strategy against adult PCs

- The odor-baited trap tree approach is <u>effective</u> (2004-2005 in 2 orchards, 2013-2019 in 6 orchards).
- > 70% reduction of insecticide compared with perimeter-row sprays.
- 93% reduction of insecticide
  compared with standard full-block
  sprays.
- This AK strategy has not been adopted by any grower.











#### Article

Toward the Integration of an Attract-and-Kill Approach with Entomopathogenic Nematodes to Control Multiple Life Stages of Plum Curculio





woods

### Long-term project: Idea developed in 2018 WITH growers

# Can we exploit natural sources of apple odor to develop a low-cost, permanent trap cropping system for multiple apple pests?



Each trap tree is grafted with 6 cultivars that are very attractive to PC and apple maggot fly (AMF).

- Research focuses on PC and AMF and includes European apple sawfly, Tarnished plant bug, and other pests.
- The concept is simple, affordable, and grower-friendly.







## 20+ blocks in MA, NH, and ME

| State | Orchard name                           | Area (in acres)<br>with grafted<br>trees | No. grafted<br>trees | Year grafting<br>done | Area of <mark>control</mark><br>block |
|-------|----------------------------------------|------------------------------------------|----------------------|-----------------------|---------------------------------------|
| NH    | 1. Poverty Lane Orchards               | 8.8                                      | 32                   | 2018                  | 2.8                                   |
| MA    | 2. UMass CSO – X-block                 | 0.5                                      | 4                    | 2018                  | 0.8                                   |
| MA    | 3. UMass CSO – Empire block            | 0.2                                      | 4                    | 2018                  | 0.3                                   |
| MA    | 4. UMass CSO – Rock Mountain           | 1.7                                      | 6                    | 2019                  | 1.2                                   |
| MA    | 5. Clarkdale                           | 2.1                                      | 6                    | 2018                  | 1.3                                   |
| MA    | 6. <u>Nicewicz</u> farm                | 1.1                                      | 4                    | 2018                  | 1.1                                   |
| ME    | 7. Ricker Hill orchards – block 1      | ?                                        | ?                    | 2018                  | ?                                     |
| ME    | 8. Ricker Hill orchards – block 2      | ?                                        | ?                    | 2019                  | ?                                     |
| NH    | 9. Apple Hill farm                     | 4.8                                      | 7                    | 2019                  | 2.0                                   |
| MA    | 10. <u>Sholan</u> Orchards             | 7.3                                      | 11                   | 2019                  | 4.1                                   |
| MA    | 11. Tougas farms                       | 0.6                                      | 4                    | 2019                  | 0.5                                   |
| MA    | 12. Ragged Hill Orchard                | 0.3                                      | 3                    | 2019                  | 0.3                                   |
| MA    | 13. Red Apple Farm                     | 2.9                                      | 6                    | 2019                  | 3.1                                   |
| MA    | 14. UMass campus (Ag. Learning Center) | 0.2                                      | 3                    | 2019                  |                                       |
|       | TOTAL                                  | 30.5                                     | 90                   |                       | 17.5                                  |

2020: No grafting.

**2021**: One more block grafted (MA)

**2022**: 5 more blocks (NH and ME)

# Plum curculio (PC) results





#### **<u>Results</u>: PC <u>captures</u> in traps and fruit <u>injury</u> in GRAFTED vs.**

#### **NON-GRAFTED TREES**

Distance between grafted trees: 30 meters





## PC captures in traps across all 12 blocks (10 MA, 2 NH) (early May to early June 2022)



Black pyramid traps





#### **Results (% of fruit with PC injury at harvest)**



#### PC INJURY BY CULTIVAR - ALL ORCHARDS COMBINED





## **Comparison across cultivars (PC injury at harvest)**





## **Comparison across cultivars (PC injury at harvest)**





# Apple maggot fly (AMF) results





#### **2020** results across 10 MA orchards (trap captures)





#### **<u>2021</u>** results across 10 MA orchards (grafted branches with more fruit)





#### Levels of fruit injury according to cultivar





### Wickson at Sholan Farms

# Fruits with numerous AMF oviposition marks







## Grafted trees seem to be effective at attracting PC and AMF relative to non-grafted trees in Massachusetts



# **Novel IPM strategy 2:**

# Grower-friendly attract-and-kill approach for AMF management

Research in collaboration with Jeremy Delisle (UNH Extension) and Glen Koehler (UME Extension)



From 2019 to 2021, apple growers who implemented an attract-and-kill strategy for apple maggot reduced their insecticide use between 75% and 82%.



# Can we successfully manage AMF using lures and perimeter-row insecticide sprays with <u>sugar added</u>?



### **Objective**

To quantify the level of AMF control achieved in commercial orchards using an attract-and-kill strategy involving use of **synthetic lures** deployed in **perimeter-row** trees in combination with **insecticide sprays with 3% sugar** 



## Approach

- Commercial orchards (MA,NH, ME): 6 (2019), 11 (2020), and 10 (2021).
- 2 treatments per block: 'Attract-and-Kill' (A&K) vs. grower standard (GS).
  - <u>'Attract'</u>: 5-component lures deployed every ~30 meters along entire perimeter.

**<u>'Kill'</u>**: Insecticide sprays with **sugar added** (to induce feeding)

| Orchard (2019)            | Area (A&K / GS) | No. AMF lures<br>(A&K block) |  |
|---------------------------|-----------------|------------------------------|--|
| Clarkdale (MA)            | 1.7 ac / 1.7 ac | 11 lures (6.4/ac)            |  |
| Red Apple (MA)            | 3.0 / 2.8 ac    | 13 lures (4.3/ac)            |  |
| UMass Cold Spring Orchard | 1.8 ac / 2 ac   | 10 lures (5.5/ac)            |  |
| Poverty Lane (NH)         | 3.5 ac / 2.7 ac | 13 lures (3.7/ac)            |  |
| Apple Hill (NH)           | 4 ac / 3.8 ac   | 17 lures (4.3/ac)            |  |
| Ricker Hill (ME)          | 5 ac / 5 ac     | 25 lures (5.0/ac)            |  |





= AMF lures= Monitoring sticky sphere

#### Attract-and-kill



#### **Grower standard**



#### Two methods of assessing treatment performance

(1) Trap-capture data (interior spheres): Indicator of relative numbers of AMF adults that had penetrated into the interiors of blocks.

# (2) Fruit infestation data: At harvest, we visually inspected:

- 20 apples on each of four trees on each of the four perimeter sides of each AK and each GS block.
- 20 apples on each of eight interior trees of each block.





#### 2019 results: trap captures



Average of 6 orchard blocks



#### **2020 results: trap captures**





#### Fruit infestation results (mean % infestation)

|      | Attract-and   | -Kill (AK)   | Grower Star   | % reduction in |                     |
|------|---------------|--------------|---------------|----------------|---------------------|
|      | Perimeter-row | Interior-row | Perimeter-row | Interior-row   | (AK relative to GS) |
| 2019 |               |              |               |                | 75%                 |
| 2020 |               |              |               |                | 65%                 |
| 2021 |               |              |               |                | 82%                 |



#### Conclusion

#### Over a 3-year period and across 6-11 orchards, the new AK system attracted to AMF to the perimeter of AK blocks, and no significant differences in levels of fruit infestation were detected



# What insect do you care more about?



#### Japanese beetle



Brown Marmorated Stink Bug



# **Novel IPM strategy 3:**

# Controlling Japanese beetles with no insecticides using a mass trapping system



MASS TRAPPING: Behaviorally-based method of reducing pest numbers by luring insect pests in large numbers to a trap or device that contains an attractant (usually a food component or a pheromone).



#### For agricultural use, available at:

Great Lakes IPM http://www.greatlakesipm.com

#### The mass trapping system







Received: 29 September 2017 Revised: 8 December 2017 Accepted article published: 16 January 2018

(wileyonlinelibrary.com) DOI 10.1002/ps.4862

#### Mass trapping designs for organic control of the Japanese beetle, *Popillia japonica* (Coleoptera: Scarabaeidae)

#### Jaime C Piñero<sup>\*</sup> and Austen P Dudenhoeffer

#### Abstract

BACKGROUND: In some regions of North America, damage caused by the Japanese beetle, *Popillia japonica*, has been increasing as beetle populations continue to become established and expand. This poses a pest management challenge for crop farmers, in particular organic producers. From 2014 to 2016 we evaluated the ability of novel mass trapping systems to capture *P. japonica* in elderberry and blueberry orchards in Missouri, USA.

RESULTS: Across a 3-year period in two locations, the mass trapping systems collected 10.3 million *P. japonica* adults while season-long adult densities on crop plants were comparatively low (elderberry: 0.5–3.7 per plant; blueberry: 0.01–0.07 per plant). Damage by *P. japonica* averaged 6.8% per plant in elderberry and 0.12% in blueberry. In 2015 and 2016, large-capacity bins with increased ventilation captured similar beetle numbers as did 1.2-m-long mesh socks (single design used in 2014), and these two trap designs outperformed non-ventilated bins.

CONCLUSION: The mass trapping designs captured high numbers of adult *P. japonica*, while comparatively few adults and little damage to the foliage were recorded on plants. Mass trapping may provide effective alternative management options for *P. japonica* with less or no insecticides applied to the crop.



#### "The Japanese Beetle Terminator 3000"



#### New low-maintenance (grower-friendly) design





#### 2017: The highest Japanese beetle populations ever recorded in Missouri





### Summary of captures (2012-2017)

| FARM              | 2012      | 2013    | 2014      | 2015      | 2016      | 2017      | TOTAL      |
|-------------------|-----------|---------|-----------|-----------|-----------|-----------|------------|
| LU Carver<br>farm | 801,000   | 92,300  | 848,710   | 1'602,089 | 2'649,294 | 2'895,000 | 8'888,393  |
| LU Busby<br>farm  | 710,800   | 100,400 | 792,466   | 1'641,995 | 2'800,591 | 672,000   | 6'718,252  |
| TOTAL             | 1'511,800 | 192,700 | 1'641,176 | 3'244,084 | 5'449,885 | 3'567,000 | 15'606,645 |





# **Novel IPM strategy 4:**

# Developing an attract-and-kill strategy for the brown marmorated stink bug



# Trap cropping ought to exploit a pest's dispersal and host selection behavior in order to protect a desired crop.

#### Stink bugs and leaffooted bugs show a preference for:

- Sorghum
- Millet
- Sunflower
- Buckwheat











Adult and nymphal feeding on corn and soybean in mid-August 2010.



The brown marmorated stink bug (BMSB) is an invasive insect that is a serious pest of fruits, vegetables, and other crops.



Pest Management

#### Sunflower as a Potential Trap Crop of *Halyomorpha halys* (Hemiptera: Pentatomidae) in Pepper Fields

#### D. C. SOERGEL,<sup>1</sup> N. OSTIGUY, S. J. FLEISCHER, R. R. TROYER, E. G. RAJOTTE, and G. KRAWCZYK

Department of Entomology, Fruit Research and Extension Center, The Pennsylvania State University, P.O. Box 330, Biglerville, PA 17307-0330.

Environ. Entomol. 44(6): 1581-1589 (2015); DOI: 10.1093/ee/nvv136

- Study conducted in PA in 2012 and 2013.
- Sunflowers used as a trap crop to protect bell pepper.
- Significantly more BMSB were observed in sunflowers than in peppers.



Environmental Entomology, 45(2), 2016, 472–478 doi: 10.1093/ee/nvw006 Advance Access Publication Date: 25 February 2016 Research article

OXFORD

Pest Management

#### Identifying a Potential Trap Crop for a Novel Insect Pest, *Halyomorpha halys* (Hemiptera: Pentatomidae), in Organic Farms

Anne L. Nielsen,<sup>1,2</sup> Galen Dively,<sup>3</sup> John M. Pote,<sup>1</sup> Gladis Zinati,<sup>4</sup> and Clarissa Mathews<sup>5</sup>

<sup>1</sup>Department of Entomology, Rutgers University, 121 Northville Rd., Bridgeton, NJ 08302 (nielsen@aesop.rutgers.edu; jmp497@scarletmail.rutgers.edu), <sup>2</sup>Corresponding author, e-mail: nielsen@aesop.rutgers.edu, <sup>3</sup>Department of Entomology, University of Maryland, College Park, MD (galen@umd.edu), <sup>4</sup>The Rodale Institute, Kutztown, PA (Gladis.zinati@rodaleinstitute.org), and <sup>5</sup>Redbud Farm, LLC, Inwood, WV and Shepherd University, Shepherdstown, WV (CMathews@shepherd.edu)

Received 2 September 2015; Accepted 15 January 2016

#### Sorghum was the most effective trap crop, followed by sunflower.



Evaluation of a grower-friendly attract-and-kill IPM system for the Brown Marmorated Stink Bug







**Killing pest stink** bugs in trap crop plants without impacting beneficials (pollinators, predatory, and parasitic insects)

BMSB pheromone (also attract other stink bug species)

Insecticidetreated netting (insects walking on it will die)

#### The 'ghost' trap

#### 2021 results (Massachusetts only, n= 5)





# Sunflower and buckwheat may play an additional role in BMSB IPM

Mateo Rull-Garza (graduate student):

### Investigating the complex of stink bug egg parasitoids present in Massachusetts







Sunflowers provide multiple benefits to growers



#### Sunflower pollen has medicinal, protective effects on bees



- Sunflower pollen can help bumblebees fight off two common pathogens.
- Defense chemicals in **pollen** can be 10 to 10,000 times more concentrated than they are in **nectar**.



#### **Sunflowers attract beneficial insects**

 Florida: Predatory insects and spiders, parasitic wasps, and important pollinators insects observed on sunflowers than on crop vegetation.

 Missouri: Sunflower was as good as sweet alyssum and buckwheat at attracting ladybeetles.



Fig. 2. Occurrence of beneficial insects was greater on sunflower vegetation than on crop vegetation during the 2002 growing season ( $F_{1.16} = 11.78, P = 0.003$ ). Error



#### Abundance of natural enemies



## Sunflowers can provide supplemental income





## Acknowledgements

#### Growers:

- <u>Massachusetts</u>: Tom and Ben Clark, Keith Arsenault, Al Rose, Joanne DiNardo, Dana Clark, Shawn Mcintire.
- New Hampshire: Steve Wood, Chuck Souther, and Giff Burnap
- Maine: Harry and Sam Ricker

#### **Collaborators and assistants:**

- Anna Wallingford, Jeremy Delisle (University of New Hampshire), Glenn Koehler (University of Maine).
- Sadie McCracken, Heather Bryant (Univ. New Hampshire), Dorna Saadat, Heriberto Godoy-Hernandez, Prabina Regmi, and Ajay Giri (UMass).



#### Funding:

United States Department of Agriculture National Institute of Food and Agriculture

New England Tree Fruit Growers Research Committee





"We can't solve problems by using the same kind of thinking we used when we created them" -Albert Einstein