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A B S T R A C T   

The Price approach allows the partitioning of composite variables into a set of additive components and has 
become an important tool in evolutionary and ecological research. However, because such components are not 
mutually independent and might be constrained by the inherent data structure, comparing and interpreting Price 
partitions among different datasets is not straightforward and has contributed to controversy in ecology. 

Here we discuss and develop null model approaches that might be used as statistical standards to normalise 
partition values and reduce collinearity between partitions. We use a simulation approach to estimate Price 
partitions of artificial data and their randomisations. Using structural equation modelling we then reveal the 
degree of collinearity between raw and standardised partitions. 

We first demonstrate that the degree of collinearity between partitions strongly depends on the data structure 
and then provide a general framework for null model selection. Null models that require limited additional 
information on the possible distribution of species richness and abundance perform best. These null models 
consistently reduce, but do not fully eliminate, collinearity between partitions. They assign separate type I and II 
error levels to each partition that differed among partitions. 

We argue in favour of null models that strike a balance between information need (simplicity) and complexity 
of additional information, but we discourage the use of simple permutation approaches that have been successful 
for analysing other biodiversity measures such as species richness. We highlight that the interpretation of ad
ditive partitions of complex ecological data will benefit from analyses of the dependence among partitions.   

1. Introduction 

The partitioning of composite variables into a set of mutually 
exclusive, additive components is a popular method of analysis in 
ecology. For example, the total biodiversity represented in a set of 
samples (gamma diversity) can be decomposed into components rep
resenting diversity within samples (alpha diversity) and diversity among 
samples (beta diversity; Crist et al., 2003). Similarly, patterns of species 
co-occurrence across communities can be partitioned into the contri
bution of species richness differences and species turnover (Baselga, 
2010). These analyses are comparable to a classic variance partitioning 
in the analysis of variance, in which the total sum of squares is 
decomposed into components of additive, interactive, and residual 
variation from different sources. To be properly interpreted, these 

ecological partitions should be compared to partitions generated by null 
or neutral models designed to mimic a random expectation while con
straining important boundary conditions (Gotelli, 2000; Chase et al., 
2011; Rosindell et al., 2012; Ulrich and Gotelli, 2013; Ulrich et al., 
2017). 

The Price equation is one such partition that has attracted a great 
deal of attention because the approach can be applied to problems from 
different disciplines (Luque, 2017). The partitions might be interpreted 
as being determined by separate mechanisms, similar to an analysis of 
variance. They are designed to logically separate several sources of 
change. but not causally separate them (Frank, 2012). In evolutionary 
biology, the Price equation decomposes the change in the mean value of 
a trait in one generation into components of transmission and selection. 
Within the biodiversity – ecosystem functioning (BEF) framework, 
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Loreau & Hector (2001) adapted the Price equation in combination with 
a null model to decompose ecosystem function variables into compo
nents of complementarity (species richness effects) and selection 
(covariance of species composition and dominance effects). Fox (2006) 
and Fox & Kerr (2012) expanded this framework to incorporate species 
losses and gains. Recently, the Price equation has been adapted to 
disentangle the drivers of spatial or temporal change in species-level 
traits and abundances (Isbell et al., 2018; Lefcheck et al., 2021; God
soe et al., 2022; Harrison et al., 2022; Ulrich et al., 2022). Fig. 1 specifies 
the possible processes involved in trait change within an evolutionary 
and an ecological context. 

In spite of the popularity of the Price Equation, it’s use in evolu
tionary ecology has been controversial in part because the components 
of a partition are not statistically independent of one another (Fox and 
Kerr, 2012; Pillai and Gouhier, 2019). For example, if there is no dif
ference in mean trait values between two assemblages (ΔT = 0 in Eq. 
(1)) the complementarity component(ΔComp) will be perfectly nega
tively correlated with the selection component (ΔCov.) However, an 
important issue that has received comparatively little attention is to 
what extent the partitions are constrained by the inherent data structure, 
for example by measurement precision. In the analysis of ecological 
community assembly, these constraints (e.g. community richness, total 
abundances, site occupation) often covary closely with traditional 
measures of diversity and community composition (Gotelli and Ulrich, 
2012; Ulrich et al., 2017). This collinearity complicates the interpreta
tion and applicability of the Price equation (Barry et al., 2019; Loreau 
and Hector, 2019; Gardner, 2020; Luque and Baravalle, 2021; Van 
Veelen, 2020; Bourat et al., 2023; Box 1). For instance, Isbell et al. 
(2018) and Bannar-Martin et al. (2018), using the 2-partition comple
mentary approach of Loreau & Hector) and the 3-partition assembly 
approach of Fox & Kerr (2012), respectively, explained the components 
of ecosystem functioning in terms of external covariates and functional 
trade-offs between partitions. However, their discussion did not 
consider collinearity effects due to internal constraints. Moreover, ab
solute partition components cannot be compared directly because they 
are constrained by constant multipliers that guarantee additivity. For 
example in Eq. (3) of Box 1, four of the five partitions are multiplied by 

total abundance N or by N and the richness difference ΔS (implicitly the 
same holds for Eq. (2)). Consequently, partitions are not scale invariant 
and depend (often non-linearly) on the spatial extent at which N has 
been estimated. The use of scale invariant relative abundances (e.g. Fox, 
2006) does not fully solve this issue because part of the partitions of Eq. 
(3) then become dependent on total richness, which also increases 
non-linearly with spatial (and temporal) extent (Ulrich et al., 2022). 
This scale dependence directly affects comparisons and the subsequent 
interpretation of Price partitions might be misleading (Govaert et al., 
2016). Consequently, we argue that any Price approach needs a statis
tical standard for comparison that accounts for the inherent scale 
dependent collinearity of the resulting partitions. 

Null model simulations and constrained randomisations can provide 
an effective benchmark for determining whether empirical patterns of 
diversity and community composition differ more than expected by 
chance or simple sampling effects. Here we ask what is the null expec
tation for Price partitions. In other words, what are the expected sizes of 
the partitions and their variances when compared to expectations based 
on assumptions of random assembly with constraints? Answering this 
question requires a systematic comparison of the partitions obtained for 
empirical or simulated data with the partitions obtained from a null 
model in which some elements of the original data are randomised and 
others are constrained. These null models can range from pattern-based 
statistical randomisations to process-based neutral models (Gotelli and 
Ulrich, 2012; Bausman, 2018; Molina and Stone, 2019). 

As in other null-model analyses, the choice of the metric and the 
randomisation algorithm used are important determinants of pattern 
detection and interpretation (Gotelli and Ulrich, 2012; Strona et al., 
2018; Molina and Stone, 2019). Because the individual components of 
Price partitions are not independent of one another, it is important to 
consider how the observed set of partitions collectively deviate from the 
expected partitions in the null model. Moreover, because some of the 
obvious constraints in null model analysis, such as the number of species 
or the abundance, are themselves part of the recipe for calculating the 
different components, the problem is more complex than in previous 
null model analyses. These are usually based on the analysis of simple, 
univariate response metrics (such as average species co-occurrence or 

Fig. 1. The change in the average expression of a trait in a community from time A to time B within an evolutionary or from site A to site B within an ecolog
ical context. 
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nestedness). 
Some of these issues were anticipated by Fox and Kerr (2012), who 

used empirical data for comparison; by Clark et al. (2019), who 
considered incomplete monoculture sampling, and by Frank (2014, 
2018), who discussed possible constraints on partitions. More recently, 
Lefcheck et al. (2021) and Ulrich et al. (2022) used resampling of species 
identity or trait data, respectively, to compare effect sizes of each 
partition and to generate null expectations, although their methods did 
not fully account for differences in species richness and trait variability. 
In spite of more than 20 year of usage of Price partitioning in ecology, 
there are still no accepted statistical standards for Price partitions. 

To better understand the implications of non-independence for Price 
equation partitions, we investigate this behaviour in simulated species 
occurrence matrices. That have typical patterns of species richness and 
relative abundance, but do not explicitly model strong biological pro
cesses such as density dependence, species interactions, or niche 
complementarity. Next, we use this set of matrices to explore correla
tions among the components of the Price partition, and to benchmark 
the performance null models and Markov chain models as baselines for 
Price partitions. We analysed both a classical 2-part partition compa
rable to the original BEF framework (Loreau and Hector, 2001) and a 

more recent 5-part partition (Ulrich et al., 2022) of ecological trait and 
abundance data. Our results emphasise that the partitions of the Price 
equation in ecology are likely to be non-independent, with consequences 
for interpretation. Below we discuss which available algorithms are able 
to account for this non-independence. Our analyses provide insight into 
the non-independence of partitions and could aid researchers in the 
analysis and interpretation of ecological Price partitions.  

2. Methods 

We first describe the statistical simulation of a set of artificial com
munity matrices that have typical univariate patterns of relative abun
dance, species richness, and inter- and intra-specific variation in trait 
values. Next, we consider 10 possible statistical standards that could be 
used with Price partitions: broken stick randomisation, parametric trait 
randomisation, Monte Carlo Markov chain (mcmc), reshuffling of species 
identity, reshuffling of species trait and abundances using additional 
empirical data (rshuff), proportional resampling from the species pool, 
reshuffling across additional empirical data (rsamp), bootstrapping, 
Bayesian parameter estimation, and neutral modelling (Fig. 2, Table 1). 

Box 1  

The Price approach partitions the change in a variable of interest. It can be derived using a generalisation of the product rule from calculus for 
problems with discrete changes (Frank, 2018). For example, let SA and SB denote the species richness in communities A and B, S the total species 
richness, and t the mean expression of an ecological trait T. The change the trait value ΔT = Δ(tS) can be partitioned by 

ΔT = Δ(tS) = tBSB − tASA = tAΔS + SAΔt + ΔtΔS = tAΔS + SBΔt
= tAΔS + (ΔtΔS + Δt(SB − ΔS)) = ΔComp + ΔCov

(1)  

where ΔComp = tAΔS and ΔCov = ΔtΔS+ Δt(SB − ΔS)

In an ecological context the expression of a trait ci of species i with the relative abundance pi can be expressed by ti = cipi. Eq. (1) can then be 
rewritten in an explicit form to show the hidden parameters of Eq. (1) (Ulrich et al., 2022) 

ΔT = Δ

(

N
∑

i
pici

)

=
NA

SA

∑

i
pici)ΔS+ SB

∑

i
Δ
(

N
S

pici

)

(2)  

NA denotes the total number of individuals (abundance) in community A. Loreau and Hector (2001), using the definition of covariance applied 
to ΔT = Δ(tS) and comparing observed plant biomass with a specific null assumption, interpreted the resulting two-partition form of Eq. (1) (in 
red) in terms of complementary (richness and relative abundance effect) and selection (covariance effect). Fox (2006) interpreted the three 
partition form (in blue) in terms of richness, habitat context (including random effects), and community composition (covariance), respectively. 

Ulrich et al. (2022) proposed a 5-partition framework that allows for the disentangling of richness, abundance, trait expression, and joint 
abundance – trait effects 

ΔT = zAΔS + NB

∑

i
ΔpiΔci + NB

∑

i
pA,iΔci + NB

∑

i
ΔpicA,i +

(
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SB
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)
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where pA,i and cA,i denote the relative abundance and trait expression of species i in community A. zA = NA
SA

∑

i
pA,icA,iis the mean trait expression in 

A. Here, we term these partitions ΔComp, ΔpΔc, Δc, Δp, and ΔN. 

We add that an algebraic reordering of Eq. (3) gives 

ΔT = zA
SB − ΔS

NA
ΔN + NB

(
∑

i
ΔpiΔci +

∑

i
pA,iΔci +

∑

i
ΔpicA,i

)

= zA
SB − ΔS

NA
ΔN + NB

(
∑

i
pi,Bci,B− pi,Aci,A

)

= f(ΔS,ΔN) + NBΔ(cp)

(4)  

Eq. (4) contains a two-partition solution equivalent to the red part in Eq. (1). The first term of Eq. (4) covers the change in community size 
(richness and abundance), while the second part subsumes the change in community structure. This modified two partition solution differs from 
the 2-partition for of Eq. (2) and both terms have a different interpretation. Particularly, the first partition does no longer solely quantify the 
change in richness but covers the covariance of richness and abundance.  
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For each approach we briefly discuss the underlying assumptions, the 
resulting constraints on the Price parameters, and the potential effects 
on the frequency of Type I (false positive) and Type II (false negative) 
statistical errors. We then use simulations to compare the behaviour of 
the three most promising approaches (mcmc, rsamp, and rshuff). 

2.1. Simulation of artificial matrices 

In order to assess the behaviour of Price partitions for changes in 
traits between two communities we first generated 80 species × sites 
matrices N, each having between 5 and 50 species (integers drawn from 

Fig. 2. Possible data used for null model randomisation approaches to Price partitions. Matrices: T and N: trait expressions TA and TB and abundances NA and NB in 
communities A and B used in the Price partitioning. Matrices TC and NC: additional observed trait expression (TC) and abundance (NC) matrices from comparable 
communities. NT: vector of row totals of NC. TP and NP: Average trait expressions TP and abundances NP in the species pool. Possible randomisation methods are 
given below the matrices for which they are suited. 

Table 1 
Possible approaches to obtain null distributions for Price partitions. Abbreviations: as in Fig. 2. S refers to the observed richness in the null communities, T and N to the 
respective species trait expressions and abundances. Q denotes the transition matrix of mcmc. Detailed discussion of each model in Appendix A.  

Approach Randomisation model Randomisation of Assumptions Constraints Behaviour Bias 
towards   

Abundance Trait     
Parametric Broken stick distribution _ _ Equal probability for partition 

values 
No constraints on T, S 
and N 

Large standard error of the 
null distribution. Low 
discriminant power 

Type II 
errors 

Resampling from a 
parametric trait distribution 

– T Trait variability follows a 
predefined probability 
distribution 

S and N fixed Lack of discriminant power 
for richness variation 

Type II 
errors 

Markov chain Monte Carlo 
randomisation (mcmc) 

Transition matrix Q Fixed probability distribution 
for Q 

No constraints on T, S 
and N within observed 
values 

Variability of partitions 
dependent on the choice of 
the distribution of Q values 

Not 
obvious 

Reshuffling Equiprobable reshuffling 
species identity 

N – Equal probability of trait 
expression across species, no 
functional or phylogenetic 
covariance 

S, T, N fixed Lack of discriminant power 
for richness variation 

Type II 
errors 

Equiprobable reshuffling 
species trait and 
abundance values (rshuff) 

NC TC TC and NC cover possible 
species trait and abundance 
space 

No constraints on T, S 
and N within observed 
values 

Site specific trait expression 
often not available 

Not 
obvious 

Resampling Proportional resampling from 
the species pool 

NP TP No variability in SAD NA and NB fixed Pool composition often not 
available. Filter effects 
excluded 

Type I 
errors 

Proportional resampling 
(rsamp) 

NT TC No variability in SAD No constraints on T, S 
and N within observed 
values 

Site specific trait expression 
often not available Reduced 
variability in NA and NB 

Not 
obvious 

Bootstrapping N, NT, or 
NP 

– No variability in species trait 
expression and abundances 

Dominance order fixed Dominant species often 
removed Collinearity among 
partitions not removed 

Type II 
errors 

Bayesian 
estimation 

Bayesian parameter 
estimation 

NP TP log-series SAD in NP T and S linearly 
dependent on N. 
Biased null 
distributions 

Pool composition often 
unknown 

Type I 
errors 

Assembly 
models 

Neutral modelling NP – log-series SAD in NP No constraints on T, S 
and N 

Low abundance variability in 
A and B at equilibrium 

Type I 
errors  
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an equiprobable distribution) and 20 sites. In 40 of these matrices spe
cies abundances per site were sampled from a lognormal distribution 
with equiprobably-assigned shape parameters in the range of 1.0 < α <
2.0. Matrix fill (number of occupied cells) ranged between 20 % and 80 
%. Occurrences of half of these matrices were re-arranged to yield a 
pattern of species nestedness (reflecting a gradient in species richness); 
the other half were re-arranged to yield a pattern species segregation 
(reflecting a high species turnover across sites). These arrangements 
generated considerable variation of species richness and total abun
dances across the sites, whereas both matrix types differed in the pattern 
of species co-occurrence. In the remaining 40 N matrices, species 
abundances were assigned by linear random numbers in the range 
[1,10]. To allow for a variation in richness across sites, abundances less 
than 0.01 were set to zero. 

To model species’ traits in each community we generated an addi
tional matrix of trait values T associated to each species × site matrix. 
With respect to the 40 nested and segregated matrices, and to 20 of the 
random N matrices each column of the T matrix contained a continuous 
trait value drawn from an equiprobable random distribution within the 
arbitrary range [1,10]. This range was chosen to obtain realistic varia
tion in trait values. For the 20 remaining T matrices trait values in the 
first site were again taken from a linear random number [1,10], while 
the trait expressions ti of consecutive sites i came from ti = t1i1.5. 
Therefore, average trait expression in the 20th site was on average 90 
times larger than in the first site. Since the trait values of each species are 
selected independently, there is no need to evoke complex mechanisms 
such as species interactions, niche complementarity, or density 
dependence. 

The simulated matrices covered four type of trait species occurrence 
combinations: random trait × nested species occurrence, random trait ×
segregated species occurrence, random trait × random species occur
rence, and trait increase × random species occurrence. These patterns 
correspond to wide range of observed community structures and trait 
variability that should have influenced the associated Price partitions in 
specific ways. 

The null models should identify the ΔComp and ΔCov partitions (Eq. 
(1)), and the Δc and ΔN partition (Eq. (3)) of the segregated, nested and 
trait gradient N–T matrix combinations as being non-random. In the 5- 
partition framework the Δc and ΔcΔp, partitions of the nested and 
segregated matrices should have been within the random expectation, 
while the significances for the Δp partition should have depended on the 
pattern of species co-occurrence and dominance. 

The rshuff null and rsamp null models require additional data about 
trait and abundance variability from which random expectations are 
derived. Randomisation of the rshuff null model was based on equi
probably reshuffled species abundances across the rows of N. For the 
rsamp null model procedure, we resampled communities A and B by 
assigning species with probabilities proportional to the species’ total 
prevalence across communities (i.e. based on the vector NT of Fig. 1, 
corresponding to the marginal row sums of the N matrix). Total abun
dances in A and B were assigned equiprobably among the simulated 
abundances in matrix N (the column totals). For rsamp and rshuff we 
randomly assigned species trait values in A and B from a truncated (− 2σ 
≤ x ≤ 2σ) Poisson distribution with σ2 = μ centred around the mean 
simulated trait value of each species. 

The present mcmc randomisation approach uses the fact that the 
vectors TB and NB of communities A and B are generated from TA and NA 
by 

TT
B NB = PTARNA = TT

A PRNA = TT
A QNA (5)  

P and R the associated transition matrices, in the simplest case diagonal 
matrices defining the magnitude of change in T and N. They collapse 
into a transition matrix Q (Appendix A). The elements x of the Q matrix 
were again sampled from a truncated (− 2σ ≤ x ≤ 2σ) Poisson distri
bution with σ2 = μ. 

First, we assessed the validity of the Price partitions and the degree of 
collinearity among partitions. For this task, we generated for each ma
trix Prices partitions for each unique pair of communities A and B, 
leading to a total of 11,400 pairwise matrix comparisons. For each 
comparison, we calculated the numbers of species, total abundances, 
and total trait expression, as well as the Bray–Curtis index of community 
similarity. We used Spearman’s rank order correlations to infer the de
gree of collinearity among partitions. Structural equation modelling 
with maximum likelihood parameter estimation served to reveal the 
mutual dependencies of ΔT and its partitions on important constraining 
variables: absolute trait value T, species richness S, total abundances N, 
and the pattern of species co-occurrence quantified by the Bray–Curtis 
index. We expected the null models to detect correlations between the 
change in total trait expression ΔT, the differences in trait expression, 
richness, and total abundance of communities A and B. 

In a next step we assessed the performance of the three null models 
(rshuff, rsamp, mcmc). To be additive the partitions of Eqs. (2) and (3) 
have constant multipliers that hinder direct comparisons of absolute 
values between partitions. In order to calculate effect sizes the Price 
partitions need to be rescaled. The mentioned null model algorithms 
randomise not only the parameter changes but also these multipliers, 
which generates increased co-variance among partitions making un
equivocal interpretation of unscaled effect sizes challenging. Further, 
any bias in the randomised abundance and trait values would also bias 
the resulting significance levels. Therefore, to calculate standardised 
effect sizes (SES) and confidence limits we normalised the partitions 
dividing the ΔComp and ΔN partitions of Eqs. (2) and (3) by total trait 
value T, the ΔCov, ΔpΔc, Δc, and Δp partitions by total abundance (NB), 
and the total trait changes ΔT by T × NB. For all three null models, we 
used for each pair of communities A and B, 1000 randomisations to 
obtain respective null model distributions, 99 % confidence limits, and 
standardised effect sizes (SES). Null model distributions ideally should 
be unbiased with respect to observed ranges of species richness and 
abundances. To test this, we calculated for each null community Shan
non diversity and evenness and compared the values for NB with the 
respective randomised NB communities. 

3. Results 

3.1. Collinearity between partition values 

With respect to the 2-partition Price equation, the present simula
tions indicated that both partitions were negatively correlated, while the 
strength depended on the pattern of species co-occurrences (Figs. 2a and 
3). In segregated communities both partitions were strongly negatively 
and in nested communities moderately negatively correlated. The ΔComp 
partition of both frameworks and ΔCov contain mean trait expression 
(zA) as a factor. Consequently, we observed a negative effect of initial 
trait expression on both richness partitions (Fig. 4). Within the 5-parti
tion framework, ΔComp and ΔN were negatively correlated, strongly so 
in the case of nested communities (Figs. 3a and 4e). There were close 
correlative relationships between ΔpΔc, Δc, and Δp and between ΔS and 
ΔN (Figs. 3 and 4g). 

The use of standardised effect sizes (SES) reduced, on average, the 
collinearity between the partitions (Fig. 3, Fig. 4g–i) and the de
pendencies on constraining factors (Fig. 4d–f). Still visible was the in
fluence of absolute trait value (TA) on the ΔCov partition (Fig. 4b, c). 

3.2. Comparison of null model behaviour 

Null models based on the information contained only in communities 
A and B tended to be underpowered (Table 1). The parametric Broken 
stick model would return large standard errors for each partition leading 
to high type II errors (Table 1). The reshuffling of species identities 
randomises the trait - abundance association but retains S, T, and N, as 
well as the relative abundances. This model has low discrimination 
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power for these parameters and therefore high type II error rates. 
Similarly, bootstrapping does not randomise the trait - abundance as
sociation and retains relative abundances (Table 1). Bootstrapping does 
not account for variability in richness between A and B. 

Resampling, bootstrapping, and neutral modelling approaches based 

on species pools need additional information about pool sizes, relative 
abundances, extinction, colonisation and dispersal probabilities in A and 
B (Table 1). This information would need to be estimated from inde
pendent sources of data. Because relative abundances in the source pool 
will often differ from the observed ones in A and B, the models are 

Fig. 3. Dot plots of mean Spearman’s rank order correlations (rS) of raw values (a) and respective standardised effect sizes of the mcmc (b) an the rshuff (c) null 
models of ΔT and six partitions (ΔComp and ΔCov cover to the 2-partition solution, ΔComp, ΔpDc, Δc, Δp, and ΔN cover the 5-partition solution, Box 1) for 3800 
matrices each of different degrees of nestedness and species segregation. Because rshuff and rsamp performed similarly (Fig. 5), the results of rshuff are pre
sented, only. 

Fig. 4. path coefficients (arrows) and explained variances (numbers) for the relationships between raw Price partitions (Box 1) and the respective SES values of the 
mcmc and rshuff null models (N = 7600 each using results for segregated and nested matrices as input) in dependence on community constraints: trait value in site A 
(TA), abundance in A (NA), richness in A (SA), and Bray–Curtis similarity between A and B (Br–Cu). Strong paths (coefficients > 0.5) in bold green, intermediate 
coefficients (0.2–0.5) in bold blue, weak coefficients (< 0.2) in thin grey. Because rshuff and rsamp performed similarly (Fig. 5), the results of rshuff are pre
sented, only. 
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inherently prone to type I errors (Table 1). Bayesian parameter esti
mation based on priors taken from the species pool suffers from the same 
problem of high false positives rates. Consequently, below we restrict 
our comparisons to the performance of three remaining null models 
(mcmc, rshuff, and rsamp) that represent a realistic compromise between 
realistic parameter ranges and additional empirical information. Two of 
these models (rshuff, and rsamp) require empirical data from more than 
two communities to obtain realistic ranges within which the Price pa
rameters might vary. 

3.3. Statistical performance of Markov, reshuffling, and resampling null 
models 

The mcmc approach retains observed species relative abundances in 
the randomised B communities (Table B1). Reshuffling and resampling 
generated randomised communities with more even abundance distri
butions and higher mean diversity (Table B1). 

The mcmc approach identified less than 50 % of the ΔT values as 
being non-random (Fig. 5). These low values resulted from compensa
tory effects of the ΔComp, ΔCov, and ΔN partitions (Fig. 4e). With respect 
to the 5-partition solution less than 10 % of the ΔpΔc, Δc, and Δp par
titions each of the nested (Fig. 5a, b), segregated (Fig. 5c, d), and random 
(Fig. 5e, f) matrices were detected as having non-random partitions 
(Fig. 5). In turn, between 23.3 % (random) and 69.2 % (nested) of the 
respective ΔN partitions appeared to be non-random. The mcmc model 
correctly identified the decrease in richness across sites in the nested 
matrices (Fig. 5a, b), while it was unable to detect the gradient in trait 
values expressed in the Δc and ΔpΔc partitions (Fig. 5g, h). 

Reshuffling and resampling had similar performance (Fig. 5). Irre
spective of matrix type, both approaches detected more than 80 % of ΔT 
partitions as being non-random and correctly identified the decrease in 
richness in the nested communities (Fig. 5). Contrary to mcmc and rshuff, 
the rsamp model correctly did not point to non-random changes in 
richness in the segregated communities. In turn, rshuff and rsamp indi
cated strong changes in the communities with randomly assigned 
abundances (Fig. 4c, d). rsamp correctly indicated the higher level of 

changes in the relative species abundances from community A to B (> 20 
% of comparisons) in the segregated communities (Fig. 5). mcmc and 
rshuff did not detect this difference (Fig. 5). 

Structural equation modelling showed that a null model approach 
using SES values reduced the dependencies of Price partitions on com
munity constraints, particularly the impact of total abundances (Fig. 3). 
Null models did not consistently reduce the collinearity between parti
tions (Fig. 4). The specific pattern of collinearity was dependent on the 
structure of species co-occurrences (Fig. 4). 

4. Discussion 

Using a null modelling approach we show that the Price equation is 
susceptible to collinearity among partitions. This is important because 
collinearity influence the absolute and relative values of partitions. 
Similar to non-orthogonal factor analyses, collinearity complicates 
interpretation. We show that the resulting bias can be mitigated by the 
incorporation of additional information about the possible variability of 
the variables, boundary conditions, and associated null expectations. 
Importantly, our results have general implications that go beyond the 
Price example studied here. Null models are a now well-established tool 
in the analysis of ecological patterns (Ulrich and Gotelli, 2013; Molina 
and Stone, 2019; Neal et al., 2023). So far, these model have been used 
to set random expectations for simple univariate metrics mainly of 
community composition and patterns of spatial species distributions 
(Gotelli and Ulrich, 2012). Importantly, our results have general im
plications for null model development and interpretation that go beyond 
the Price example studied here. 

Classical null models for pattern detection in community assembly 
focus on a single metric and randomise the data without the need for 
additional information on, for example, community composition and 
colonisation dynamics (Gotelli and Ulrich, 2012; Neal et al., 2023). 
However, the recent finding that such randomisation might not fully 
eliminate biases due to the inherent non-independence of observed and 
randomised data (the Narcissus effect) indicated that in more complex 
situations data randomisation alone might not suffice for unequivocal 

Fig. 5. Proportions of significantly positive (a, c) or negative (b, d) partitions (two-sided 5 % error level) of nested (a, b) and segregated (c, d), equiprobably random 
(e, f), and trait change (g, h) artificial communities (total of 3800 single pairs of sites each). Green: Monte Carlo Markov Chains (mcmc), Orange: reshuffling (rshuff), 
blue: resampling (rsamp). Nomenclature as in Box 1. 
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pattern detection (Ulrich et al., 2017, 2018). Indeed, the randomisations 
of our simulated data based on the reshuffling of species (trait) identity 
and on the randomisation of observed dominance orders appeared to be 
unsuited to serve as standards for Price partitions (Table 1). Only the 
Monte Carlo Markov chain approach appeared to be potentially suited 
(Fig. 4). This class of models uses observed data in combination with a 
predefined empirically guided transition rule. Here we assumed that 
abundances and trait values are a truncated Poisson distributed. Ideally, 
the transition rule might be based on observations about trait and 
abundance variability. We also assumed that species richness and 
abundances varied within observed boundaries. This need of additional 
information makes mcmc data driven similar to the present rshuff and 
rsamp null models. mcmc might only be an alternative if not additional 
empirical data is available. 

The comparative analysis of null models demonstrated suitability of 
those models that compromise between information need (simplicity) 
and complexity of additional information. Null models that randomise 
observed data of communities A and B only are simple but face the 
Narcissus syndrome (Ulrich et al., 2017). Process based null models 
relying on ecological processes of community assembly (colonisation / 
extinction dynamics) are complex and need information of species pools 
and dispersal. Such information is often not available and has to be 
estimated. Therefore, our results strongly indicate that realistic and 
appropriate null distributions are best obtained using empirical data 
from additional sets of comparable communities. These are the input 
data for the rshuff and rsamp null models and also might serve to feed the 
transition matric of the mcmc null model. 

Our work suggests that empirical analyses using the Price equation 
can be improved by including additional information sources. Classical 
parameter comparisons rely on statistical tests using estimates of stan
dard errors. With respect to Price partitions it would be desirable to have 
an appropriate error propagation included in the partitions, for instance 
from simulated variation of ΔT. However, this would need the same 
information about the possible variability in ΔT (Eq. (1), trait expres
sion, richness, and abundances) as required for the discussed null 
models. Additionally, the use of standard errors of partitions does not 
solve the inherent questions about collinearity and scale dependence as 
such standard errors would also covary with spatial and temporal extent. 

Fox & Kerr (2012) used a different approach and created Price par
titions for pairs of control and N-enriched plots in a grassland nitrogen 
enrichment experiment to quantify the effects of species additions and 
losses. The challenge is that not all plots differ in traits, species, or 
abundances, so it may be hard to tease apart the direct and indirect 
effects of these factors on the resulting Price partitions. Additionally, 
community parameters from controlled experiments such as total rich
ness and relative abundances are often constrained and collinearity 
among the replicated plots is frequently high. This is an issue which is 
common in most biodiversity – ecosystem functioning studies; artifi
cially reduced variability in the system might increase type II error rates. 
Finally, in many biogeographic cases trait and abundance data will not 
be fully available. In these cases additional data mainly serve to estimate 
the variability in richness, trait space, and abundances as an input to 
generate randomised communities. Unfortunately, only few studies 
provided respective data on intraspecific abundance and trait variability 
at the community level (e.g. Lamb et al., 2009; DeCock et al., 2021). In 
this respect our work should be read as a call for community analyses 
based on the trait variability of individual species. 

Previous comparative work on null models tried to assign type I and 
II error levels for a single estimate of interest (Ulrich and Gotelli, 2007, 
2013). More nuance is needed for methods that estimate several pro
cesses such as partitions. In the present case, we found the rshuff and 
rsamp models to properly detect differences in abundances and trait 
values while performing worse in detecting differences in richness 
(Fig. 5a, b, d). The lack of difference in trait values was correctly 
detected by all three null models (Fig. 5) while difference in trait values 
was only detected by rshuff and rsamp. An explanation demands the 

behaviour of all the model with respect to the communities, for which 
trait and abundance values were simple linearly distributed random 
numbers (Fig. 5c). Such an assignment introduces some degree of vari
ability in total abundances across communities while species total 
abundances across sites asymptotically equalise with increasing number 
of sites. Consequently, random samples from the respective marginal 
totals (and also reshuffling) generate random communities with a 
comparatively lower variability in abundance than observed in com
parisons of two communities A and B. This stochastic effect might make 
rshuff and rsamp less suited to detect non-randomness in the ΔN and also 
in the ΔCov partitions (Fig. 5). In this respect mcmc performed better 
although this model too had increased type II error rates (Fig. 5c, d). 

An important task of null models is to reduce covariation of focal 
variables with constraining factors. The three null models studied here 
performed well in this respect when using standardised effect sizes 
(Fig. 4). In the 2-partition version ΔCov still was highly positively 
correlated with total abundances (Fig. 4b, c). Fortunately, this covari
ance would not change interpretation of the ΔComp partition and 
therefore the positive correlation of ecosystem performance and di
versity within the BEF framework. Collinearity between the SES values 
of partitions was also consistently reduced in comparison to the raw 
partition values (Fig. 4g–i). Collinearity was one point of criticism 
against the use of Price partitioning in ecology (Pillai and Gouhier, 
2019; van Veelen, 2020; Bourat et al., 2023). Indeed, in our simulated 
nested data DComp and DCov were strongly correlated (rS = 0.70, Fig. 3) 
while the respective SES values were much weaker correlated, particu
larly for the mcmc model (rS = 0.17). Importantly, the high collinearity 
of the ΔComp and ΔN partitions under certain data structures (here, 
segregated species occurrences) demonstrates that it might be difficult 
to disentangle the joint effects of total abundance and richness on the 
change of community properties, particularly functioning. Further, ab
solute trait values (yield in the case of BEF) had a high impact on the 
ΔComp partition in our simulations in comparison to the ΔCov partition. 
Any interpretation of the relative strength of both partitions needs to 
account for these collinearities. The alternative partition as derived in 
Eq. (4) might perform better in this respect. 
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