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Abstract. Comparing the structure of presence/absence (i.e., binary) matrices with those of
randomized counterparts is a common practice in ecology. However, differences in the ran-
domization procedures (null models) can affect the results of the comparisons, leading matrix
structural patterns to appear either “random” or not. Subjectivity in the choice of one particu-
lar null model over another makes it often advisable to compare the results obtained using sev-
eral different approaches. Yet, available algorithms to randomize binary matrices differ
substantially in respect to the constraints they impose on the discrepancy between observed
and randomized row and column marginal totals, which complicates the interpretation of con-
trasting patterns. This calls for new strategies both to explore intermediate scenarios of restric-
tiveness in-between extreme constraint assumptions, and to properly synthesize the resulting
information. Here we introduce a new modeling framework based on a flexible matrix ran-
domization algorithm (named the “Tuning Peg” algorithm) that addresses both issues. The
algorithm consists of a modified swap procedure in which the discrepancy between the row
and column marginal totals of the target matrix and those of its randomized counterpart can
be “tuned” in a continuous way by two parameters (controlling, respectively, row and column
discrepancy). We show how combining the Tuning Peg with a wise random walk procedure
makes it possible to explore the complete null space embraced by existing algorithms. This
exploration allows researchers to visualize matrix structural patterns in an innovative bi-
dimensional landscape of significance/effect size. We demonstrate the rational and potential of
our approach with a set of simulated and real matrices, showing how the simultaneous investi-
gation of a comprehensive and continuous portion of the null space can be extremely informa-
tive, and possibly key to resolving longstanding debates in the analysis of ecological matrices.
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INTRODUCTION

The problem of identifying non-random structural pat-
terns of species distribution compared to a background
expectation of ecological noise has received much atten-
tion, leading to the development of statistical standards
for pattern identification in binary presence-absence
matrices (rows = species, columns = sites; Gotelli and
Graves 1996, Gimenez et al. 2014). The most popular
approach for this purpose is null model analysis (Gotelli
2000, Gotelli and Ulrich 2012), which typically consists of
quantifying a structural pattern with an appropriate met-
ric, and then comparing the observed measure with those
obtained in a set of randomized (i.e., null) versions of the
original matrix. The resulting effect size quantifies the
strength of the observed pattern, and the simulation gener-
ates a frequentist estimate of statistical significance. This
procedure, however, raises several issues at each step of
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analysis (Gotelli and Ulrich 2012): (1) the chosen metric
has to quantify correctly the pattern of interest (Almeida-
Neto et al. 2008, Baselga 2010, Tuomisto 2010); (2) the
null model has to randomize the pattern of interest, leav-
ing other confounding patterns unaffected (Gotelli and
Graves 1996); (3) the null model should not be vulnerable
to Type I errors, that is, it should not produce statistically
significant results for a stochastic matrix generated by sim-
ple random processes; (4) the null model should not be
vulnerable to Type II errors, and be therefore able to cor-
rectly reject the null hypothesis for a matrix in which struc-
tural patterns are caused by species interactions or other
factors of ecological interest (Ulrich et al. 2017).

Null models for randomizing presence-absence matri-
ces retain, at minimum, the observed number of rows
(usually species) and columns (usually sample sites).
Furthermore, most null models retain also the matrix fill
(i.e., the ratio of the total number of occurrences to the
number of matrix cells). The key difference among exist-
ing null models is therefore how they treat marginal
sums of the matrix, which represent the occurrence fre-
quencies of the different species (= row sums) and the
number of species per site (= column sums).
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Marginal sums can typically be: (1) unconstrained,
with the probability of a cell in the null matrix to be
occupied completely independent from the correspond-
ing row and/or column total of the original matrix; (2)
perfectly constrained, with marginal totals of the null
matrix that exactly match those of the original matrix;
or (3) proportionally constrained, with marginal totals
of the null matrix that match on average those of the
original matrix, but differ slightly for each null matrix
that is generated.

Because these three classes of marginal total con-
straints can be applied independently to rows and col-
umns, a basic set of nine null model algorithms appears
(Gotelli 2000). It is a well-known issue that these nine
algorithms can sometimes generate contrasting results
when applied to the same matrix (Gotelli and Ulrich
2012). Furthermore, they are also characterized by inevi-
table tradeoffs between Type I (rejecting a true null
hypothesis) and Type II (failing to reject a false null
hypothesis) statistical errors, with the equiprobable-equi-
probable algorithm (which does not constrain neither
row nor column marginal totals) being most vulnerable
to Type I statistical error (Wright et al. 1997), and the
fixed-fixed algorithm (which constrains both row and
column marginal totals) being most vulnerable to Type
11 statistical error (Gotelli 2000).

The choice of one null model over another is usually
made on the basis of ecological assumptions, and of
benchmark performance testing on artificial matrices
that contain specified amounts of structure and random-
ness (Gotelli 2000, Gotelli and Ulrich 2012). By both of
these criteria, the fixed-fixed algorithm has proven most
popular. It is fairly robust to Type I errors when applied
to random matrices with heterogeneous row and column
totals. The assumptions of the fixed-fixed algorithm also
match the field ecologist’s intuition that there are proba-
bly intrinsic differences between species’ occurrence fre-
quencies that do not reflect species interactions, and that
sites can vary in total species richness because of factors
that do not reflect resource limitation (Gotelli and
Ulrich 2012). Yet, the fixed-fixed null model may be
overly conservative and prone to type II errors in com-
parison to other null models that relax the assumptions
on marginal totals (Ulrich and Gotelli 2012, Strona and
Fattorini 2014).

The nine algorithms, however, represent only a subset
of possible null models that could be ideally defined
depending on how much they constrain marginal totals.
To better illustrate this point, we can define a two-
dimensional landscape with the dimensions correspond-
ing, respectively, to the average discrepancy in row and
column marginal totals between the original matrix and
its randomized counterparts obtained using a particular
null model. Ideally, the nine classical null models are reg-
ularly spaced on such a landscape (Fig. 1). Yet, as we
will demonstrate and discuss extensively below, although
suggested by intuition, the intermediate position of the
proportional algorithms depicted in Fig. 1 does not
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always match what is observed in reality. Here we take
the challenge of providing a method to exploring the
whole landscape in a continued and controlled way. For
this, we introduce the “Tuning-Peg” (TP) algorithm,
which has two parameters that permit to generate null
matrices with prescribed discrepancy in row and column
marginal totals.

Thus, for a given data matrix and metric, the applica-
tion of the TP algorithm with enough, varying combina-
tions of the adjustment parameters makes it possible to
generate visualizations of significance and effect size
across the entire landscape. This approach has the
potential to give deeper insights into the processes of
community assembly, and may help to resolve long-
standing issues in ecology, such as, for example, whether
or not (and/or under which assumptions) nestedness,
which measures the tendency for the community of a
given locality to be a subsample (in terms of species
composition) of richer communities (Atmar and Patter-
son 1993), as well as the tendency for species in an eco-
logical networks to share interacting partners (Strona
and Veech 2015), is ubiquitous in natural systems
(Bascompte et al. 2003, Joppa et al. 2010, Strona and
Fattorini 2014, Strona and Veech 2015).

METHODS

We introduce a procedure aimed at exploring, for a
given focal empirical matrix, a bi-dimensional space
whose x and y axes indicate, respectively, the degree of
discrepancy between the marginal column and row
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Fic. 1. Ideal representation of a 2-dimensional landscape

filled up with hypothetical null models, with the two dimensions
corresponding, respectively, to the discrepancy in row and col-
umn marginal totals between the original matrix and the ran-
domized counterparts (obtained with the hypothetical null
model). Superimposed across the landscape are the nine classi-
cal algorithms used for null model analysis of binary matrices.
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totals of the focal matrix, and those of a target random-
ized counterpart. Thus, a given point having coordinates
(x;, y;) identifies the exact position in the bi-dimensional
null space of all possible null matrices whose column
and row marginal totals have a discrepancy with respect
to those of the focal matrix equal to x; and y; (see below
for details on how discrepancy is computed).

The whole procedure is summarized in Fig. 2 and is
based on combining a new matrix randomization algo-
rithm named “Tuning Peg” (TP) with a random walk
procedure aimed at reducing the computational demand
of a thorough exploration of the null space. An area of
interest is first identified in the null space, and then sub-
divided into a regular grid whose nodes correspond to
target values of marginal total discrepancies between the
original matrix, and the null matrices to be generated.
The four cornering nodes are filled up using classical
randomization algorithms (FF, EF, FE, EE). Then, the
TP algorithm is used to generate a null matrix for each
remaining node in the grid, by repeating the process of
selecting a random node already hosting a null matrix as
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a starting point to generate a null matrix in one ran-
domly extracted, empty neighboring node. The comple-
tion of a single random walk generates one null matrix
for each node in the grid, ideally covering the whole null
space of interest. Repeating the random walk several
(e.g., 100-1,000) times for each node generates a set of
null matrices large enough to estimate a P or SES value
for that particular node, and hence to generate a bi-
dimensional landscape of significance/effect size. A
detailed explanation of these steps is provided in the fol-
lowing paragraphs.

Delimiting the null space

Given a focal presence-absence matrix with i = 1 to R
rows (= species), and j = 1 to C columns (= sites), and a
randomized (i.e., null) version of that matrix, both with
rows and columns sorted in decreasing order of their
respective marginal totals, we define the average normal-
ized row and column mismatches between the two matri-
ces as, respectively:
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Fic. 2. Overview of the procedure to generate a landscape of significance. (I) The null space is subdivided in a regular grid
whose node corresponds to evenly spaced discrepancy targets (i.e., combinations of M, and M, values). The nodes at the four cor-
ners of the null space are filled using the classical FF, FE, EF, and EE algorithms. (II) a node (node_0) in the grid already hosting a
null matrix is extracted at random with uniform probability; if present, an empty node (node_e) neighboring node_0 is extracted at
random with uniform probability. (I1I) the TP algorithm is applied to the matrix of node_0: two cells are selected at random (A),
and swapped if different (B); if the swap increases the absolute difference between the target and the observed M, and/or M, values
(C), the cells are swapped back to their previous position (D); otherwise, the modified matrix is retained (E). The swap procedure
(A-E) is repeated until the absolute differences between the observed values of M, and M, and the target ones of node_e become
smaller than specified thresholds ¢, and 7. (IV) steps I-III are repeated until all nodes in the grid have been filled up with a null
matrix (V).
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where r; and ¢; are the expected sums of the i-th row and
Jj-th column of the original matrix, and sr; and sc; are the
corresponding row and column sums of the null matrix.

For any focal matrix, we can then define a bi-dimen-
sional space in which each point ideally corresponds to a
set of null matrices having specific M, and M, values.
Within this space, we identify a portion of interest delim-
ited by the positions of classical null models. At one
extreme, the most conservative algorithms (prone to type
II errors) generate null matrices preserving exactly the mar-
ginal totals of the original matrix (FF). These conservative
algorithms are located in the lower-left corner of the null
space of interest. At the other extreme, the most liberal
algorithms (prone to type I errors) generating matrices in
which occurrences are placed in cells with equal probability
(EE), whose average (over 1,000 replicates in our experi-
ments) M, and M, values define the upper-right corner of
the null space of interest (Figs. 1, 2-I). We denote those
upper-right values as max(M,) and max(M,) because they
define the upper bounds of the null space of interest. This,
however, does not imply that null matrices having row
and/or column mismatches higher than max(/,) and max
(M) are not possible for a given matrix.

A fundamental aspect to be accounted for in the com-
putation of M, and M, (and hence of their maxima) is
that different values of discrepancy can be reached by
simply randomizing row and column order. This subtle
issue is related to whether or not the identity of rows and
columns is relevant to the specific analysis for which the
null matrices are being generated. Ideally, if some partic-
ular hypothesis in which the actual order of rows and
columns is meaningful, it would make sense to compute
M, and M, using egs. 1,2 with no particular adjust-
ments. In all other cases for which row and column iden-
tity is irrelevant to the metric of choice (either because it
is unaffected by the original row and column order, or
because it requires a preliminary ordering of the focal
matrix), M, and M, should be computed only after the
original and the randomized matrices have been sorted
according to the same criterion, which should also be
applied in the computation of the target metric. Our
choice of using the decreasing order of marginal totals
simply reflects a common practice in ecological analysis,
but is by no means the only possible criterion.

Identifying row and column mismatch targets

After max(M,) and max(M,.) have been identified, one
can designate a set of target M, and M, values within
the intervals [0, max(M,)] and [0, max(M.)]. The choice
of the target values can be arbitrary, but because the
goal of our procedure is a thorough and uniform
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exploration of the bi-dimensional null space defined by
marginal constraint degrees, we will focus here on the
case of equally spaced M, and M. target values. These
correspond to the nodes of a square grid graph obtained
by subdividing [0, max(M,)] and [0, max(M,)] into n
equal intervals (Fig. 2-I), with the node in the lower left
position corresponding to (M, =0, M.=0), and the
node in the upper right position corresponding to (max
(M,) and max(M.)), consistent with our previous
description of the bi-dimensional null space (Fig. 1).

Approaching the discrepancy targets

The procedure we describe here aims at generating effi-
ciently, for each node in the grid, a random matrix with
marginal row and column discrepancy (in respect to the
original matrix) satisfying the corresponding target M,
and M. values. The four extreme vertices of the grid can
be filled using standard null model algorithms, and par-
ticularly, the lower left corner can be filled using a FF
algorithm (here we used the Curveball algorithm by
Strona et al. 2014), the lower right using a EF algorithm,
the upper left using a FE algorithm, and the upper right
using a EE algorithm (Fig. 2-I). The rest of the grid is
filled using the following random walk procedure:

1. a node (node_0) in the grid already hosting a null
matrix is chosen at random with uniform probability
(Fig. 2-1I);

2. if present, an empty node (node_e) neighboring
node_0 is chosen at random with uniform probability
(Fig. 2-1I);

3. a swap procedure (called the Tuning-Peg algorithm
and described in detail in the next section) is applied
to the matrix of node_0 until the differences between
its M, and M, values and those of node_e become
smaller than pre-selected thresholds (Fig. 2-III; see
next section for additional details on threshold val-
ues). If the algorithm fails, node_e is left empty, other-
wise it is filled up with the randomized matrix. Prior
to this, however, to enhance structural independence
between matrices in neighboring nodes, the matrix of
node_e is randomized using a standard FF algorithm.

4. steps 1-3 are repeated (Fig. 2-IV) until all nodes in the
grid have been filled up with a null matrix (Fig. 2-V).

The Tuning-Peg (TP) algorithm

At each step of the algorithm, two cells are selected at
random (Fig 2-1II, A). If they are different, they are
swapped (Fig 2-II1, B). If the swap increases the absolute
difference between the target and the observed M, and/or
M. (Fig 2-111, C), the cells are swapped back to their previ-
ous position (Fig 2-I11, D). Otherwise, the modified matrix
is retained (Fig 2-1I1, E). The swap procedure (Fig 2-111I,
A-E) is repeated until the absolute differences between the
target and the observed values of M, and M, are smaller
than specified threshold ¢, and ¢. (see below). The
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thresholds are needed because although the target M,
and M, are ideally equally spaced within the intervals
[0, max(M,)] and [0, max(M )], there is a finite number of
actual possible values for M, and M., depending on matrix
fill and structure (thus, in some cases, it could be impossi-
ble to reach a pre-selected target value of M, and M,.).
Because the ultimate scope of our procedure is to
explore the null space uniformly, in theory, the optimal
t, and ¢, values are the smallest possible thresholds that
permit the TP algorithm to complete its search, which
would ensure that the null matrices are distributed as
regularly as possible throughout the discrepancy land-
scape (ideally, perfectly achieving the grid nodes). How-
ever, small deviations from the pre-selected discrepancy
targets do not constitute a major issue, considering that
the actual discrepancy values are known (being com-
putable by comparing a null matrix with the original
one), and can be used to generate a truthful landscape of
significance. Nevertheless, since it is important, in princi-
ple, to have a broad coverage of the null space, the
thresholds should be at least small enough to prevent
overlap between the different observations. For example,
in case row and column discrepancy are subdivided into
10 intervals (as in Fig. 2), then the thresholds should be:

0.5 x max (M,)
LS ————
10
< 0.5 x max (M,)

- 10

In all our analyses we conservatively set
_ 0.25 xmax (M,) _ 0.25 xmax (M,)
= 10 > and l. 10

To prevent the algorithm from being trapped by a
peculiar matrix structure, we allowed for a maximum of
50,000 consecutive “failed” swap attempts (i.e., not
reducing the distance between the observed and the tar-
get M, and/or M).

Exploring the bi-dimensional null space

Repeating n times the procedure described in the pre-
vious paragraphs (Fig. 2, [-V) generates, for each node
in the discrepancy grid, a set of null matrices with given
M, and M,. Those can then be used to obtain a set of
corresponding P and/or SES values for a target struc-
tural pattern (such as nestedness), that can be plotted or
interpolated across the bi-dimensional grid generating a
landscape of significance and/or effect size.

Such landscapes provide visual information about the
overall significance of a pattern under a wide set of null
hypotheses. Besides being visually appealing and informa-
tive, the landscapes are also suitable for further analyses
aimed at quantifying and characterizing the area of sig-
nificance. Here we consider only a few of the most obvi-
ous measures, namely the fraction of nodes in the grid
having significance (P) values lower than 0.05 or higher
than 0.95, and the mean of all SES values computed
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across the whole landscape. We leave more complex anal-
ysis of the landscape patterns for future work.

It should be highlighted that, depending on the struc-
ture of the original matrix (size, fill, shape, and, most
importantly, distribution of marginal totals), the explor-
able portion of the null space can vary. This applies in
particular to matrices having uniform marginal totals,
because those will not be much different from their null
counterparts obtained using an EE algorithm, which
would lead to very low max(M,) and max(M,) values.
This dependency should be taken into account when
interpreting the results of an analysis, especially when
comparing results from different matrices having very
different max(M,) and/or max(M_).

Tests on artificial matrices

As a proof of concept, and to test how Type I and II
errors vary across the bi-dimensional null space, we
applied the TP procedure to three sets of 100 artificial
(i.e., randomly generated) matrices. The first set (U)
included matrices filled completely at random (that is, by
starting with a matrix filled with Os, and then selecting
cells with uniform random probability, until half of the
cells have been filled up with 1s). The second set (H)
included matrices having marginal totals drawn from an
exponential distribution with exponents sampled from a
uniform random distribution with values between one
and two. Those matrices are expected to show a certain
degree of nestedness emerging from passive sampling,
and are thus expected to be more nested than most null
matrices generated with weak constraints on marginal
totals, but not more nested than null matrices having sim-
ilar marginal totals (and hence having a structure equally
affected by passive sampling). The third set (N) included
nested matrices. Those were generated by starting from a
perfectly nested matrix (having nestedness based on over-
lap and decreasing fill, NODF = 100, Almeida-Neto
et al. 2008), that was then “perturbed” (as in Strona and
Veech 2015) by randomly replacing presences with
absences and vice versa in 25% of the total number of
matrix cells (extracted, one cell at a time, with repetition).
The size of each matrix was determined randomly, with
row and column numbers sampled with uniform random
probability between 15 and 100, and with fill varying with
uniform random probability between 0.2 and 0.8.

We applied the TP algorithm to each matrix 100 times,
hence generating 100 null matrices for each node in a grid
of 121 equally spaced discrepancy targets, obtained by
varying M, and M, from 0 to max(M,) with step 0.1 x
max(M,), and from 0 to max(M,) with step 0.1 x max
(M,). In total, we generated therefore 3.63 mol/L null
matrices.

Landscapes of significanceleffect size

For each matrix, we calculated nestedness using the
NODF metric (Almeida-Neto et al. 2008), and the
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average degree of segregation in species co-occurrences
using the C-score (Stone and Roberts 1990). For each
matrix, we compared the observed NODF and C-score
with those measured on a set of 100 null matrices
obtained at each of the 121 unique combinations of M,
and M.. In addition, we compared the observed values
of NODF and C-score with those measured for 100 null
matrices generated separately for 6 “classic” null models
that should generate an intermediate level of discrepancy
between expected and observed row and/or column mar-
ginal totals. The 6 “classic” null models are: PP, propor-
tional row and column totals; PE, proportional row
totals, equiprobable column totals; EP, equiprobable
row totals, proportional column totals; PF, proportional
row totals, fixed column totals; FP, fixed row totals, pro-
portional column totals (all of these were implemented
with the procedures in Gotelli 2000); UG, unbiased pro-
portional row and column totals (as implemented by
Ulrich and Gotelli 2012).

All comparisons of observed vs. simulated results were
based on a frequentist estimate of tail probability (P-
value), computed as the fraction of null matrices having
NODF and C-score higher than the respective values of
the matrix under consideration. We also computed effect
size as a standardized effect size (SES value), computed
as SES = (x—p)/o, with x being the observed metric
score, i being the mean of the scores of the null matrices,
and o being their standard deviation.

For each matrix, we created two landscapes of signifi-
cance and effect size by plotting the P and SES values
obtained using the TP algorithm in a bi-dimensional
grid in which the coordinates (x and y) of each cell cor-
responded, respectively, to M. and M, values, that is, a
grid where each cell corresponded to a unique setup of
TP. We used different color gradients (magenta to blue,
and light green to dark green) to discriminate between
left and right tails of the null distribution (i.e., P < 0.05
and P > 0.95), and lighter colors (magenta to white, and
light green to white) to indicate non-significant P-values.
We use an analogous color-scale to map SES values,
with values from 1.96 to the maximum recorded SES
colored from magenta to blue, values from —1.96 to the
minimum recorded SES colored from light to dark
green, and lighter colors in between. Thus, for both
NODF and C-score, a dark green, blue or light-colored
cell at position x = M, and y = M, of the landscape
indicates, respectively, that the observed metric is signifi-
cantly smaller, significantly larger, or not significantly
different than expected from the TP algorithm set-up at
M, and M.

For empirical matrices (see below), we plotted individ-
ual landscapes. Conversely, for each one of the three sets
of artificial matrices (random with uniform marginal
totals, random with exponential marginal totals, and
nested) we averaged SES and P-values of all matrices in
the set in a single landscape, where we also plotted six cir-
cles, representing the proportional null model algorithms
(PP, PE, EP, PF, FP, UG). Each circle is placed in the
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landscape in a position with M, and M. respectively equal
to the average row and column mismatches of the 100
matrices generated with the corresponding null model. In
other words, the position of the circles indicates the TP
setting generating matrices with the same (average) row/
column mismatches of the six proportional null models.
The fill color of each circle indicates the P-value obtained
with the respective null model for the target metric. When
these colors are the same as the background landscape,
they indicate similar behavior of the proportional null
model and the TP algorithm with comparable mismatch
parameters. When the circle and background colors dif-
fer, the two algorithms (i.e., the proportional null model
and the TP) are producing different results. When a circle
falls outside the landscape, it means that the proportional
algorithm produces matrices tending towards particular
configurations having row and/or column marginal dis-
crepancy higher than that expected under the assumption
of equiprobable placement of occurrences (EE) we used
to delimit the null space.

Error rates

We defined the frequency of Type I errors as the frac-
tion of points in the null space (corresponding to a speci-
fic setting of the TP algorithm, i.e., to a unique
combination of M, and M) for which the null matrices
were more or less structured than random expectation
(i.e., having NODF or C-score P-values smaller than
0.05, or larger than 0.95). Similarly, we estimated Type
II error rate, for each nested matrix, as the fraction of
points in the null space for which the nested pattern was
not detected (NODF P-value > 0.05); an additional esti-
mate of Type I error rate was obtained as the fraction of
points in nested matrices for which a significant co-
occurrence pattern (C-score P < 0.05) was detected.

Tests on Empirical matrices

We applied our approach to the well-known dataset by
Atmar and Patterson (1995). As in the case of theoretical
matrices, for each empirical matrix we generated both
landscapes of effect size and of significance for NODF
and C-score for 121 combinations of M, and M,. We pro-
vide the complete results as Supporting Information, while
we focus our discussion below on five empirical matrices
illustrating different situations of particular interest:

1. Ants in the Society Islands, from Wilson and Taylor
(1967) (10 localities, 21 species, 57 occurrences; file-
name in Atmar and Patterson’s dataset:
“Sociantt.txt”);

2. Terrestrial arthropods on 6 islets composed of pure
Spartina alterniflora, in Northwest Florida, initially
defaunated by fumigation, 24 weeks after the treat-
ment, from Rey (1981) (6 localities, 41 species, 79
occurrences; filename in Atmar and Patterson’s data-
set: “Defau624.txt”);
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3. Reptiles on the California Islands, from Wilcox
(1980) (15 localities, 27 species, 65 occurrences; file-
name in Atmar and Patterson’s dataset: “Calir-
ept.txt”);

4. Birds of the Canary Islands, from Bacallado (1976)
(7 localities, 78 species, 280 occurrences; filename in
Atmar and Patterson’s dataset: Canaboss.txt).

5. South Africa Sciobius weevil species distribution in
arbitrary, connected quadrats, from Morrone (1994)
(21 localities, 47 species, 124 occurrences; filename in
Atmar and Patterson’s dataset: Saweevil.txt);

Programming details

We implemented the algorithms and performed all of
the analyses using the Python programming language (van
Rossum and de Boer 1991). All the code necessary to gen-
erate null matrices using the TP algorithm, together with
an implementation of the 10 classic null models and func-
tions to compute NODF and C-score, is provided in Data
S1 (all code has been developed and tested using Python
version 2.7). In addition, we provide an R script including
the functions necessary to perform the complete bi-dimen-
sional null model analysis, and plot the landscape of signif-
icance/effect size for both NODF and C-score (Data S2).
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REsuLTs

Artificial matrices

The landscape of significance/effect size for the three
sets of artificial matrices were very consistent with the
expectation (Figs. 3-4). In particular, the nearly totality
of null matrices in all replicates and across the whole
landscape had NODF and C-score values not different
from those observed in the random artificial matrices
with uniform marginal totals (U), while they resulted
more nested (NODF) and with a smaller C-score than
those observed in the artificial nested matrices (N). As
predicted, the matrices with heterogeneous, exponential
marginal totals (H) resulted more nested than expected
across almost all the NODF landscape, with the excep-
tion of the lower left corner (corresponding to null
matrices having marginal totals very similar or identical
to those of the original matrix).

Type 1 error rates averaged over the whole landscape
were 0.04 £+ 0.08 (SD) for NODF and 0.05 + 0.10 for C-
score in the case of random matrices with uniform row
and column marginal totals (U). Very few of the nested
matrices (N) had a C-score higher than random expecta-
tion, resulting in a Type I error rate of 0.01 + 0.00.
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The landscapes report the effect size (SES) and significance (P-value), as well as the fraction of matrices per cell in the

landscape having P-value smaller than 0.05 or larger than 0.95 for NODF averaged over the sets of random matrices with uniform
marginal totals (U); random matrices with heterogeneous marginal totals (H); and nested artificial matrices (N). We also plotted
the dots summarizing the results obtained by using classical proportional randomization algorithms in a position corresponding to
the average of the row/column mismatch of the null matrices. However, for the random matrices with uniform marginal totals (U),
those fell out of the landscape boundaries, and are therefore shown in a separate picture (Fig. 5).
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Fic. 4. The landscapes report the effect size (SES) and significance (P-value), as well as the fraction of matrices per cell in the
landscape having P-value smaller than 0.05 or larger than 0.95 for C-score averaged over the sets of random matrices with uniform
marginal totals (U); random matrices with heterogeneous marginal totals (H); and nested artificial matrices (N). We also plotted
the dots summarizing the results obtained by using classical proportional randomization algorithms in a position corresponding to
the average of the row/column mismatch of the null matrices. However, for the random matrices with uniform marginal totals (U),

those fell out of the landscape boundaries, and are therefore shown in a separate picture (Fig. 5).

Conversely, a higher than expected nested structure was
correctly identified nearly across the whole landscape in
most of the nested matrices (N), leading to a Type II error
rate (averaged over the landscape) of 0.01 £+ 0.01 for
NODF (Fig. 3). In fact, error rate for NODF was 0 in all
cases, except when both M, and M. were close to 0. This
seemingly strange pattern reflects the documented diffi-
culties of detecting structure in highly nested matrices
using NODF in combination with a FF null model, deriv-
ing from the reduced set of possible alternative configura-
tions of the original matrices preserving marginal totals
(see Strona and Fattorini 2014).

The random matrices with heterogeneous marginal
totals (H) were correctly identified as “random” only
when compared with null matrices with very similar mar-
ginal totals (i.e., with both M, and M, close to 0). For
higher values of M, and M., however, the matrices were
identified as significantly nested (with an average type I
error rate for NODF of 0.94 + 0.09; similarly, the aver-
age of type I error rates measured as the fraction of
points in the landscape where the measured C-score was
lower than the expected one was 0.84 + 0.14. In a small
fraction of the landscape (0.01 £ 0.02) the observed C-
score was significantly higher than the expectation.

In the case of nested matrices (N), and even more in
that of random matrices with heterogeneous marginal

totals (H), the placement of the proportional algorithms
in the landscape according to their averaged M, and M,
values indicated that these algorithms generated an
intermediate degree of restrictiveness in between fully
constrained or uniformly randomized marginal totals.
By contrast, in the case of random artificial matrices
with uniform marginal totals (U), most of the propor-
tional algorithms produced null matrices with average
M, and M, values higher than max(M,) and max(M,)
(Fig. 5).

In the case of nested matrices (N), the resulting P and
SES values obtained using the proportional null models
were in close accordance with corresponding results (i.e.,
at the same position in the null space) obtained by using
the TP algorithm (Figs. 3-4). The same applies to matri-
ces with heterogeneous marginal totals (H) with the
exception of the proportional algorithm UG (Ulrich and
Gotelli 2012), which correctly indicated randomness
both for NODF (P =0.83) and for the C-score
(P =0.23). The placements of the proportional null
models outside the boundaries of the bi-dimensional null
space explored by the TP in the case of random matrices
corresponded to a discrepancy in the SES and P-values.
In particular, all proportional algorithms, and particu-
larly the UG generated null matrices tending towards a
more nested structure (thus having higher NODF and
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colored according to the resulting P-value (with the same color-scale used for the landscape).

smaller C-score) than that of the focal random matrices
generated with uniform marginal totals (U).

Effect of matrix properties

In random matrices with uniform marginal totals (U),
matrix properties (number of rows and columns, size, fill
and shape) were not correlated neither with the averaged
effect sizes (SES), nor with the fraction of M, and M,
combinations identifying significant patterns for both
NODF and C-score (Table 1). Conversely, in the case of
random matrices with heterogeneous marginal totals (H),
artificial nested matrices (N), and empirical matrices from
the Atmar and Patterson’s (1995) set, matrix properties
were moderately correlated with both the averaged effect
size and with the fraction of M, and M, combinations for
which P-values were significant (Table 1).

Empirical matrices

The landscapes of NODF and C-score effect size and
significance for the whole Atmar and Patterson’s (1995)

dataset are reported in Appendix S1. Among those, we
identified five particular cases showing different situa-
tions (Fig. 6). First, the matrix of the Society Islands
ants was consistently identified as being strongly (and
significantly) nested across the whole landscape (Fig. 6).
Consequently, C-score was lower than expected
(Fig. 6A). Conversely, the second matrix (terrestrial
arthropods on six defaunated islets in Northwest Florida
composed of pure Spartina alterniflora) appeared to be
random across the whole landscape (Fig. 6B).

The other three matrices were characterized by hetero-
geneous landscapes of significance/effect size that high-
light the need for further investigation, and emphasize
how focusing on a single null model could lead to deceiv-
ing results. Specifically, the matrix of reptiles on the Cali-
fornia (Channel) Islands was characterized by a diagonal
gradient of structure across the landscape, where nested-
ness became evident only when relaxing the constraints
on marginal totals (i.e., moving towards high M, and M.
values) (Fig. 6C). The matrix of birds of the Canary
Islands showed a horizontal gradient, in which strong
constraints on column totals (i.e., low values of M) led
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TABLE 1.
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Effect of matrix properties on the landscapes of
significance/effect size.

NODF C-score NODF C-score
(2) (SES) (P) (P)
Random (H)
R 0.48* —0.47* 0.22% 0.33*
C 0.3*% —0.37* —0.3% 0.38%*
Size 0.62%* —0.66* 0.01 0.56*
Shape 0.09 —0.04 0.29* —0.05
Fill —0.17 —0.71%* —0.15 0.48%*
Random (U)
R —0.13 0.14 0.10 0.15
C —0.01 —0.08 —0.12 —0.12
Size —0.10 0.06 0.00 0.04
Shape —0.07 0.12 0.16 0.14
Fill —0.04 0.02 —0.01 0.11
Nested
R 0.63* —0.64* 0.57* 0.15
C 0.57* —0.7%* —0.12 0.39%*
Size 0.83%* —0.94%* 0.33%* 0.38%*
Shape —0.03 0.14 0.45%* —0.27%*
Empirical
R 0.68* —0.62%* 0.48* 0.28*
C 0.23%* —0.37%* —0.34* 0.15%
Size 0.61%* —0.72% 0.00 0.25%
Shape 0.23* —0.09 0.55%* 0.05
Fill —0.12* 0.03 —0.41%* 0.03

Notes: We compared: SES values averaged over the whole
landscape of significance, and the fraction of combinations of
M, and M, where a significant pattern was detected (P < 0.05)
with: number of rows (R) and columns (C); matrix size, com-
puted as R x C; matrix shape, computed as R/C; matrix fill,
computed as the ratio between the number of occurrences in the
matrix, and matrix size. Pairwise relationships between variables
(expressed as Spearman’s rank correlation coefficient) are
reported separately for random matrices with both heteroge-
neous (H) and uniform (U) marginal totals, nested artificial
matrices, and empirical matrices from Atmar and Patterson’s
(1995) dataset. Significant relationships (P < 0.05) are denoted
by *. We do not report fill for nested matrices since those were
all generated with the same fill (0.5) in order to obtain the
desired degree of nestedness (see Methods).

to the identification of less than expected nestedness
regardless of M, values, while relaxing the constraints on
M, led to the identification of significant nestedness
(Fig. 6D). The fifth matrix (South Africa Sciobius weevil
species) showed an analogous situation, but with a verti-
cal gradient of effect size/significance driven by the degree
of constraints in row marginal totals (Fig. 6E).

DiscussioN

The fact that different constraints in null models can
have a fundamental effect on the detection of ecological
patterns has been at the center of the debate for decades
(e.g., Connor and Simberloff 1979, Ulrich and Gotelli
2013). In this paper, we provide a new perspective on the
issue, by showing how different null models can be rec-
onciled on a bi-dimensional continuum of restrictive-
ness, whose dimensions are defined by the marginal

Ecology, Vol. 99, No. 1

mismatch in row and column totals between the target
matrix and its randomized counterparts. In doing this,
we introduced a new null modeling framework which
provides an immediate and valuable visualization of how
the effect size (or significance) of a given pattern varies
across the null space.

Adding a second dimension to null model analysis,
that is, presenting the results in a landscape of signifi-
cance/effect size is preferable to providing a single SES
score or P-value resulting from the choice of a particular
null model for several reasons. Justifying the choice of
one null model over another on the basis of ecological/
biological assumptions is not always straightforward.
Moreover, biases can derive from the restrictiveness (or
lack of) of the chosen null model. Showing how the
effect size changes under different combinations of row
and column constraints offers a broader perspective, per-
mitting to distinguish between cases where a pattern is
always significant regardless of null model restrictive-
ness, from cases where the significance is limited to
specific regions of the null space. Moreover, investigating
how the effect size varies in the null space defined by
row and column restrictiveness can provide interesting
insights on the determinants of matrix structure.

The FF algorithm, being the most conservative among
the typical matrix randomization procedures, has been
often recommended due to its ability to reduce Type I
errors in most situations. However, it is also known to be
prone to Type II errors in particular situations. One of
those is that of highly nested matrices, especially when
using the FF algorithm in combination with the popular
NODF nestedness metric. This problem is well high-
lighted in Fig. 3: the only point in the landscape where
the analysis failed to identify the non-random pattern in
the set of the artificial nested matrices (N) is at the FF
algorithm (i.e., at zero M, and M_). However, relatively
small changes in row and column restrictiveness lead to
an abrupt transition to the correct identification of sig-
nificant nestedness, that is also preserved across the rest
of the landscape. It is noteworthy that the region of the
landscape adjacent to the lower left corner (zero M, and
M,) relaxes only slightly the constraints of the FF algo-
rithm, hence generating null matrices whose marginal
totals are still very close to those of the original ones.
Therefore, although satisfying the need to rule out the
effect of marginal totals (e.g., local species richness and
species prevalence in typical species-area incidence
matrix) on the pattern of interest, those quasi-FF matri-
ces proved themselves more reliable than the typical
approach (FF) in detecting structure of highly nested
matrices. Furthermore, they correctly identified as not-
nested the random matrices with exponential marginal
totals (Fig. 3). Conversely, higher values of M, and M,
lead to the incorrect detection of nestedness due to pas-
sive sampling.

In the case of random artificial matrices with uniform
marginal totals (U), most of the proportional algorithms
produced null matrices with average M, and/or M,
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Fic. 6. Landscapes of effect size (SES) of five empirical matrices selected from Atmar and Patterson’s (1995) dataset. (A) Ants
in the Society Islands; (B) terrestrial arthropods on 6 islets composed of pure Spartina alterniflora, in Northwest Florida, initially
defaunated by fumigation, 24 weeks after the treatment; (C) reptiles on the California Islands; (D) birds in the Canary Islands; (E)
South Africa Sciobius weevil species distribution in arbitrary, connected quadrats.

values higher than max(M,) and/or max(M,) (Fig. 5).
Apparently these algorithms, and specifically the PP and
UG algorithms, when used in combination with matrices
with uniform marginal totals, produce null matrices with
a tendency towards more nestedness (low C-score and
high NODF) that fall outside the null space of interest.
This is in contrast with the random pattern correctly
identified in the rest of the investigated null space.

In the case of random matrices with heterogeneous
marginal totals (H), all the classical algorithms generate
matrices with lower nestedness than that observed in the
focal matrices, with the exception of FF (which of
course, preserving the heterogeneous distribution of
marginal totals permits to get rid of the potential con-
founding effect of passive sampling), and UG. As in the
case of random matrices with uniform marginal totals
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(U), the UG algorithm tends to generate matrices with
higher NODF and lower C-score than those observed in
random matrices with heterogeneous marginal totals
(H), hence leading to the identification of less than
expected nestedness, and more than expected segrega-
tion. However, due to the increased level of nestedness
due to passive sampling in the random matrices with
heterogeneous marginal totals (H), the differences in
NODF and C-score compared to the UG null matrices
were not large enough to be identified as significant.

The landscapes of significance/effect size obtained with
our procedure show very well how, for random matrices
with heterogeneous marginal totals (H), only a compar-
ison with null matrices with row and column marginal
totals close to the target matrix (and hence retaining the
heterogeneity in marginal totals and accounting for the
consequent passive sampling bias towards nestedness)
correctly avoid Type I statistical errors and false signifi-
cance. Using less restrictive null models (or setting the
tuning peg to higher M, and/or M, target values) leads to
false positives.

In our analysis of artificial matrices, we knew a priori
that the placement of presences in the heterogeneous
matrices was random, and that therefore the degree of
structure was simply a product of passive sampling dri-
ven by marginal totals. For empirical matrices, it may be
hard to say whether (and to what extent) the marginals
are a cause or a consequence of the marginal distribu-
tions. In the absence of any further information, the par-
simonious approach is to preserve the structure of the
marginals, and test for non-random patterns above and
beyond this constraint. Our landscapes of significance/
effect size provide better insights into this issue, because
they reveal more clearly the extent to which the marginal
constraints are (or are not) responsible for the outcome
of the null model analysis.

The experiments on the empirical matrices showed
further why examining a broader portion of the null
space than that usually explored in ecological studies is
fundamental to a proper investigation of matrix struc-
ture. In the first two cases (Fig. 6A-B), the observed
structural patterns were consistent across the whole
landscape. Furthermore, they were reasonable from an
ecological perspective, with the distribution of ant spe-
cies in the Society Islands showing the typical nested
structure (Fig. 6A) expected in relatively stable insular
systems (Atmar and Patterson 1993); and the latter, rep-
resenting the arthropod communities of six islets com-
posed of Spartina alterniflora a few weeks after having
been defaunated by fumigation, showing a random
structure consistent with the initial disturbance, and the
relatively small time for re-colonization (Fig. 6B).

The other three examples demonstrated that matrix
patterns can be often too complex to be assessed by single
metric-null model combinations, and that their interpre-
tation is strictly dependent on the ecological meaning of
null model assumptions (Ulrich and Gotelli 2013). For
instance, the matrix of California (Channel) Islands
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reptiles showed a tendency towards less than expected
nestedness for low values of M, and M,, and the opposite
tendency (more than expected nestedness) for higher val-
ues (Fig. 6C). In an over-simplification, if we assume that
the observed number of reptile species per island, as well
as the number of islands where a given species occurs are
not really representative of any important ecological
mechanism, we would identify the matrix as nested. This,
however, would correspond to the assumption that the
islands in the dataset do not differ in their likelihood of
being colonized by a reptile species, as well as in their
habitat and resource availability, and that all species have
similar colonization abilities and ecological requirements.
Conversely, if we relax this assumption, then we have to
identify the matrix as not nested. Similar reasoning,
applied for only column or only row totals, can be applied
for the fourth and fifth examples (birds of the Canary
Islands and Sciobius weevils of South Africa; Fig. 6E-F).

In a typical analysis, one would have probably focused
on just one null model, either identifying the matrices as
nested or not, and then building the conclusions on only
one of these contrasting results. The landscape of signifi-
cance, conversely, provides, at glance, a broader spec-
trum of results, hence representing a more cautious, and
definitely more informative, approach to null model
analysis of binary matrices.

Similar situations highlight how trying to synthesize
the structure of an ecological matrix with a single num-
ber may hide more complex scenarios that are worth a
more in-depth investigation. For this, our new approach
offers a valuable alternative to classical null model analy-
sis, which has relied on a handful of algorithms that, in
fact, represent specific settings of the more general TP
algorithm. We are convinced that focusing on the land-
scape of significance/effect size, which can reveal how
the strength of an ecological pattern varies according to
a broad, continuous range of possible assumptions,
could be much more rewarding than trying to justify
interpretations based on a single algorithm. Considering
the long history of species-area matrix analysis, we ecol-
ogists have often focused on one or another single dot of
a Georges Seurat pointilist painting. We hope our
method could help us taking some steps back, and get a
better look at the big picture.
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