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Spatial turnover of multiple ecosystem functions is more associated
with plant than soil microbial β-diversity
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Abstract. Biodiversity—both above- and belowground—influences multiple functions in terrestrial
ecosystems. Yet, it is unclear whether differences in above- and belowground species composition (β-
diversity) are associated with differences in multiple ecosystem functions (e.g., spatial turnover in ecosys-
tem function). Here, we partitioned the contributions of above- and belowground β-diversity and abiotic
factors (geographic distance, differences in environments) on the spatial turnover of multiple grassland
ecosystem functions. We compiled a dataset of plant and soil microbial communities and six indicators of
grassland ecosystem functions (i.e., plant aboveground live biomass, plant nitrogen [N], plant phosphorus
[P], root biomass, soil total N, and soil extractable P) from 18 grassland sites on four continents contributing
to the Nutrient Network experiment. We used Mantel tests and structural equation models to disentangle
the relationship between above- and belowground β-diversity and spatial turnover in grassland ecosystem
functions. We found that the effects of abiotic factors on the spatial turnover of ecosystem functions were
largely indirect through their influences on above- and belowground β-diversity, and that spatial turnover
of ecosystem function was more strongly associated with plant β-diversity than with soil microbial β-
diversity. These results indicate that changes in above- and belowground species composition are one mech-
anism that interacts with environmental change to determine variability in multiple ecosystem functions
across spatial scales. As grasslands face global threats from shrub encroachment, conversion to agriculture,
or are lost to development, the functions and services they provide will more strongly converge with
increased aboveground community homogenization than with soil microbial community homogenization.

Key words: aboveground–belowground linkages; β-diversity; ecosystem functions; grasslands; multifunctionality;
Nutrient Network; soil fungi and bacteria.
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INTRODUCTION

Biodiversity influences a variety of ecosystem
functions such as primary productivity, litter
decomposition, and carbon and nutrient cycling
in terrestrial ecosystems (Wardle et al. 2011,
Naeem et al. 2012). Since the 1990s, numerous
experimental studies have documented that
some dimensions of biodiversity (typically local-
scale plant species richness, hereafter α-diversity)
promote plant primary productivity (Cardinale
et al. 2006, Schmid et al. 2009, Duffy et al. 2017).
However, most early studies focus on how biodi-
versity loss influences a single ecosystem func-
tion, such as a nutrient pool size or the rate of an
ecosystem function (but see Hector and Bagchi
2007, Gamfeldt et al. 2008). More recent work
demonstrates that biodiversity positively affects
an ecosystem’s ability to support multiple ecosys-
tem functions (i.e., ecosystem multifunctionality;
Hector and Bagchi 2007, Maestre et al. 2012,
Manning et al. 2018). When species are lost from
a community, the capacity of that community to
perform multiple ecosystem functions may be
diminished. Connecting biodiversity to multi-
functionality therefore enhances our ability to
understand the consequences of biodiversity
change for sustaining overall functioning in real-
world ecosystems (Gamfeldt et al. 2008, Eisen-
hauer et al. 2016, Mori et al. 2018, Manning et al.
2019).

Most experimental studies of biodiversity and
ecosystem function research have been con-
ducted at relatively small spatial scales (van der
Plas 2019) and have focused on how changes in
α-diversity affect individual ecosystem functions
or an aggregated measure of multiple ecosystem
functions, that is, α-multifunctionality (van der
Plas et al. 2016, Hölting et al. 2019). While it is
still controversial whether species are being lost
at the spatial scale at which these empirical stud-
ies are conducted (Cardinale et al. 2018), it is
clear that species composition is changing (War-
dle et al. 2011, Bannar-Martin et al. 2018, Blowes

et al. 2019). For example, β-diversity, spatial turn-
over in species composition among communities
(Anderson et al. 2011), increases with species
heterogenization in some areas, whereas it
decreases as communities become homogenized
in other areas (Arroyo-Rodrı́guez et al. 2013).
Clearly, differences in species composition (i.e.,
β-diversity) can lead to differences in ecosystem
function (Pasari et al. 2013, Grman et al. 2018,
Hautier et al. 2018, Winfree et al. 2018): A pine
plantation and a tropical rainforest have very dif-
ferent functions. But, it remains unclear whether
differences in function that arise in these diver-
gent ecosystems are the product of differences in
aboveground or belowground community struc-
ture (Talbot et al. 2014, Gravuer et al. 2020).
There is evidence that plant (van der Plas et al.
2016, Hautier et al. 2018), soil fungal (Mori et al.
2018), and soil multi-trophic (Martinez-Almoyna
et al. 2019) β-diversity are broadly linked to spa-
tial turnover in multiple ecosystem functions
(i.e., β-multifunctionality, the pairwise differ-
ences in multiple ecosystem functions (Hölting
et al. 2019, Peters et al. 2019, van der Plas et al.
2016)) from local to regional scales. But again, it
remains unclear whether spatial turnover in mul-
tiple ecosystem functions arises more strongly
from differences in aboveground community
structure (aboveground β-diversity) or differ-
ences in belowground community structure (be-
lowground β-diversity).
In this study, we examined the relative impor-

tance of spatial differences in above- and below-
ground species composition (β-diversity) on the
spatial turnover of multiple ecosystem functions
in grasslands. Specifically, we predicted that (1)
plant and soil microbial β-diversity jointly deter-
mine the spatial turnover of multiple ecosystem
functions, while (2) abiotic factors mediate the
relationship between β-diversity and spatial turn-
over in multiple ecosystem functions. To test
these hypotheses, we used data from 18 grass-
land sites on four continents (Appendix S1:
Table S1, Fig. S1). At each site, we collected data
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on plant and soil microbial communities as well
as six indicators of ecosystem function that are
associated with biological productivity and
nutrient pools in both above- and belowground
compartments of grassland ecosystems: plant
aboveground biomass, plant nitrogen (N), plant
phosphorus (P), root biomass, soil total N, and
soil extractable P (Garland et al. 2021).

METHODS AND MATERIALS

Data collection
We collected data from a subset of 18 sites

from the Nutrient Network presented in Prober
et al. (2015; Appendix S1: Fig. S1, Table S1). The
Network is a globally coordinated experiment to
investigate the impacts of human activities (e.g.,
nutrient fertilization) on grassland structure and
function (Borer et al. 2014). In this study, we used
a total of 47 unfertilized control plots (1
m × 1 m) of 18 Nutrient Network sites, which
were selected based on the availability of data
characterizing the soil microbial communities
and plant N and P. The unfertilized plots were
established between 2007 and 2011, and included
a single plot in three sites, two plots in three sites,
three plots in 11 sites, and five plots in one site
(Appendix S1: Table S1). The dataset covers 11
ecosystem types (alpine grassland, annual grass-
land, mesic grassland, montane grassland, old
field, pasture, savanna, semiarid grassland,
shortgrass prairie, shrub steppe, and tallgrass
prairie) across four continents (Africa, Aus-
tralasia, Europe, and North America). The diver-
sity of study sites represents a wide range of
climatic and environmental conditions across
grasslands worldwide with mean annual precipi-
tation ranging from 262 to 1898 mm, mean
annual temperature ranging from 0.3 to 18.4°C,
soil pH ranging from 4.6 to 8.3, soil total N rang-
ing from 0.03 to 1.38%, soil extractable P ranging
from 1 to 253 ppm, and plant productivity rang-
ing from 23 to 1022 g�m−2�yr−1.

Climate data were obtained from the biocli-
matic dataset of WorldClim (version 1.4; data
source http://www.worldclim.org; Hijmans et al.
2005). We used the 30 arc-second resolution
(~1 km) climate data to estimate the spatial varia-
tion in climate for the 18 sampling sites. Mean
annual temperature (BIO1) and precipitation

(BIO12) between 1950 and 2000 were extracted
for further analysis.
During the growing season, plant above-

ground biomass (g�m−2) was collected in 2011
and 2012 from two 0.1-m2 strips within an unfer-
tilized 1-m2 plot. Aboveground plant biomass
was separated into dead and live and dried at
60°C to a constant mass. Samples for the mea-
surement of plant aboveground N and P were
collected between 2010 and 2014 from the same
unfertilized plots as aboveground plant biomass
and sorted by functional group (annual/peren-
nial grasses, other graminoids, forbs, and
legumes). Content of plant aboveground N and
P was measured following the methods pre-
sented by Anderson et al. (2018). The content of
plant aboveground N and P and the live biomass
of plant functional groups were then used to cal-
culate plant aboveground N (%) and P (%). The
percent coverage of all vascular plant species
was visually estimated to the nearest 1% within
the unfertilized 1-m2 plot in the field. Maximum
percent coverage was assigned for those species
that have two growth peaks within a growing
season in 2011 or 2012.
Soil and root samples (five soil cores 2.5 cm in

diameter × 10 cm in depth) were collected from
the 0.1-m2 strips the same as the plant above-
ground biomass harvest plots. Roots were
washed and dried at 40°C to a constant mass
(Cleland et al. 2019). Soil pH was measured
using a pH probe (Fisher Scientific Waltham,
Massachusetts, USA) in a ratio of 2:5 dry soil to
deionized water. Soil total N (%) and extractable
P (ppm) were measured using the same methods
as plant N and P. Soil DNA was extracted by the
MoBio PowerSoil kit (Mo Bio Laboratories, Cali-
fornia, USA) and amplified using the V4 region
of the 16S rRNA gene with the 515f/806r primer
set for bacteria and the first internal transcribed
spacer (ITS1) region of the rRNA gene with ITS1-
F/ITS2 primer set for fungi. Samples were
sequenced on the Illumina HiSeq and MiSeq
instruments at the University of Colorado Next
Generation Sequencing Facility. The molecular
and bioinformatics analyses were processed fol-
lowing the protocol as described by Prober et al.
(2015). All the experimental protocols are pro-
vided on the website of Nutrient Network
(https://nutnet.org/methods).
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Quantifying geographic and environmental
distance

We calculated great circle (geographic) dis-
tance (km) among sites using the longitude and
latitude of the geographic locations. We calcu-
lated environmental distance using Euclidean
distance (i.e., the square root of the sum of
squared differences between environmental vari-
ables of two plots). Mean annual temperature
and mean annual precipitation were considered
as key indicators of climatic differences among
sites (Prober et al. 2015). We also used a third
variable (soil pH) to account for environmental
differences among sites (Fierer and Jackson
2006). We computed climatic and soil pH dis-
tance matrices separately. Prior to the calculation
of environmental distance, we standardized
environmental variables by taking their range-
relevant standardization for each variable as fol-
lows:

Xstd ¼ X�Xmin

Xmax�Xmin
(1)

where X represents the values of the environ-
mental variable in the original raw dataset, Xmin

and Xmax represent the minimum and maximum
values of the environmental variable, respec-
tively. This standardization approach has the
advantage that it allows the environmental vari-
ables to have different means and standard devi-
ations but with equal ranges (Grace et al. 2018).

Quantifying community β-diversity
We quantified community β-diversity using

two approaches. Firstly, we calculated three
indices of β-diversity for plant, soil bacterial, and
fungal communities: Sorensen index, Horn
index, and Morisita-Horn index. The three
indices are a function of order q which determi-
nes the sensitivity of a diversity index to rare and
abundant species (Jost 2007). Specifically, Soren-
sen index is a β-diversity index of q order zero
and uses species presence/absence data (i.e.,
weights are equal for both rare and abundant
species). Horn index (q order one) is weighted in
proportion to species frequency in a community
and Morisita-Horn index (q order two) assigns
abundant species more weight than rare species.

Secondly, we decomposed the Sorensen index
of β-diversity (i.e., total β-diversity) into two
complementary indices, that is, richness

difference and species replacement. Richness dif-
ference refers to the differences in the number of
species while species replacement refers to the
pure species turnover among communities
(Podani and Schmera 2011, Legendre 2014). The
two components of β-diversity measure the rela-
tive richness difference and species replacement
for any pair of communities that can be linked to
the functions and processes of ecosystems (Mar-
ini et al. 2013, Legendre 2014). We used species
presence/absence data following the methods
proposed by Podani and Schmera (2011). The
beta.div.comp function (Legendre 2014) was
used to compute richness difference and species
replacement.

Quantifying spatial turnover in multiple ecosystem
functions
We calculated a multivariate index of spatial

turnover of multiple ecosystem functions using
Euclidean distance (Martinez-Almoyna et al.
2019, Peters et al. 2019). We used Euclidean dis-
tance because it is metric and can be derived by
tracing back to each individual variable based on
the triangle inequality (Goslee 2010; see sensitiv-
ity analysis in Appendix S1: Fig. S2). Above-
ground plant live biomass, plant N, plant P, root
biomass, soil total N, and soil extractable P were
selected as the indicators of ecosystem functions
(Spehn et al. 2005, Allan et al. 2013, Jing et al.
2015, Delgado-Baquerizo et al. 2016, Hautier
et al. 2018, Garland et al. 2021). To quantify
whether spatial turnover in multiple ecosystem
functions is different from the null expectation,
we developed a null model to calculate a stan-
dardized effect size for each pairwise Euclidean
distance (L2SES) as follows:

L2SES ¼L2obs�μðL2simÞ
σðL2simÞ (2)

where L2obs is the observed pairwise Euclidean
distance, L2sim is the simulated pairwise Eucli-
dean distance, μ(L2sim) is the mean of the simu-
lated Euclidean distance, and σ(L2sim) is the
standard deviation of the simulated Euclidean
distance.
To calculate L2SES, we used the matrix of the

six ecosystem functions (functions are in columns
and plots are in rows). We generated a
randomized matrix of ecosystem functions by
taking samples without replacement. This
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randomization process was to constrict our simu-
lations to the levels of ecosystem functions
within a sample which assumed that the values
of an ecosystem function were randomly drawn
from the distribution of this specific set of six
ecosystem functions. We repeated this 1000
times. The mean and standard deviation of the
simulated Euclidean distance were then calcu-
lated. We classified each pairwise Euclidean dis-
tance into three groups. That is, |L2SES| > 1.96
represents that the spatial turnover of multiple
ecosystem functions is significantly greater
(group I) or less (group II) than the null expecta-
tion. |L2SES| < 1.96 represents that the spatial
turnover of multiple ecosystem functions is not
different from the null expectation (group III).
Furthermore, if L2SES ≥ 1.96, the spatial turnover
of multiple ecosystem functions is large enough
to detect a significant difference between two
communities. If L2SES < 1.96, the observed value
of Euclidean distance is in the range expected by
chance or is less than the null expectation,
thereby we considered the spatial turnover of
multiple ecosystem functions is not large enough
to detect a significant difference between two
communities.

Statistical analyses
We conducted sensitivity analysis using simple

Mantel tests to select the indices of β-diversity
and the number of ecosystem functions. Firstly,
we inspected the bivariate associations between
β-diversity and the spatial turnover of multiple
ecosystem functions. Five indices of β-diversity
(Sorensen index, the replacement and richness
difference of Sorensen index, Horn index, and
Morisita-Horn index) were separately assessed
for each organismal type (plant, bacteria, and
fungi). We calculated Spearman correlation coef-
ficients (rho) to account for the non-linear bivari-
ate associations. The replacement and richness
difference had lower correlations with the spatial
turnover of multiple ecosystem functions than
Sorensen index; Horn index; and Morisita-Horn
index were not significantly different from Soren-
sen index in most cases (Appendix S1: Table S2).
Therefore, we selected the Sorensen index for fur-
ther analyses. Secondly, we determined how the
bivariate associations between plant β-diversity
and the spatial turnover of multiple ecosystem
functions change with the number of functions.

We calculated all combinations of the six indica-
tors of ecosystem functions and calculated the
Spearman correlation coefficients using simple
Mantel tests. After inspection, the bivariate corre-
lations increased with the number of ecosystem
functions (Appendix S1: Fig. S2; see Jing et al.
2020 for more information about the relation-
ships between biodiversity effects and the num-
ber of ecosystem functions considered). We
therefore used the multivariate index of spatial
turnover in multiple ecosystem functions com-
bining all six indicators of ecosystem functions.
To examine whether geographic, climatic, and

pH distances were associated with above- and
belowground β-diversity, we conducted simple
Mantel tests. In addition, we used partial Mantel
tests controlling for the influences of other abiotic
factors to examine the bivariate associations
between geographic and environmental dis-
tances with β-diversity. We used the same meth-
ods examining whether abiotic factors and plant
and soil microbial β-diversity were associated
with spatial turnover in multiple ecosystem func-
tions. Specifically, simple Mantel tests were used
to assess the bivariate associations and partial
Mantel tests were used to assess whether abiotic
factors influence the bivariate associations
between β-diversity and spatial turnover in mul-
tiple ecosystem functions.
To overcome the drawbacks of correlative

inference from Mantel tests and to tease apart the
relative influences of geographic distance, envi-
ronmental distance and β-diversity of plant, soil
bacteria, and soil fungi on spatial turnover in
multiple ecosystem functions, we used structural
equation models (SEMs). A prior framework for
testing the hypothesis was built upon previous
work to address the relative importance of past
and current environmental change on above-
and belowground community assemblages and
ecosystem functions (Barnes et al. 2016, Delgado-
Baquerizo et al. 2016, Martinez-Almoyna et al.
2019, Prober et al. 2015). We specifically assumed
that (1) both geographic distance and environ-
mental distance affect above- and belowground
β-diversity. That is, the legacies of historical
events and contemporary environmental condi-
tions determine the biogeography of plant and
soil microbial community assemblages (Martiny
et al. 2006); (2) the effects of abiotic factors are
mainly through above- and belowground β-
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Fig. 1. Relationships between abiotic factors and above- and belowground β-diversity. (a) Bivariate
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diversity (Appendix S1: Fig. S3). We tested two
SEMs, one tested the hypothesis that plant β-
diversity influences soil microbial β-diversity and
the other tested the opposite directionality (that
soil microbial β-diversity influences plant β-
diversity). We excluded soil pH distance from
the SEMs because the influence of soil pH dis-
tance on β-diversity and spatial turnover in mul-
tiple ecosystem functions was substantially
smaller than geographic and climatic distances.
In addition, we included two residual correla-
tions between geographic distance and climatic
distance and between soil bacterial and soil fun-
gal β-diversity. The significance tests for the path
coefficients were estimated by a bootstrap proce-
dure with 9999 random samples. Non-significant
paths were removed sequentially from the candi-
date models. As a result, we kept only path coef-
ficients that were statistically significant. The
goodness-of-fit was assessed using several
indices including χ2 tests (P > 0.05), comparative
fit index (CFI > 0.90), root mean square error of
approximation (RMSEA < 0.10), and standard-
ized root mean square residual (SRMR < 0.10;
Grace 2020, Rosseel 2012).

All statistical analyses were carried out in R
version 3.6.1 (R Development Core Team 2019).
All Mantel tests were performed with 9999 per-
mutations. We extracted the climate data using
the raster package (version 2.8-4; Hijmans 2018).
We calculated the geographic distance using
rdist.earth function in the fields package (version
8.4-1.6; Furrer et al. 2015), the Euclidean distance
using distance function in the ecodist package
(version 2.0.7; Goslee and Urban 2007), and the
Sorensen index, Horn index, and Morisita-Horn
index using sim.table function in the vegetarian
package (version 1.2) (Charney and Record
2015). The sim.table function calculates pairwise

similarity indices, and we transformed these sim-
ilarity indices to dissimilarity indices by taking
one minus the similarity indices. We performed
the Mantel tests using mantel function in the eco-
dist package (version 2.0.7; Goslee and Urban
2007). SEMs were performed using lavaan pack-
age (version 0.6-7; Rosseel 2012). Data cleaning
and visualization were using the tidyverse pack-
age (version 1.3.0; Wickham et al. 2019) and cow-
plot package (version 1.1.1; Wilke 2018).

RESULTS

We first compared the biogeography of above-
and belowground taxa. We determined the rela-
tive importance of geographic distance vs. differ-
ences in climate and soil pH on plant, soil
bacterial, and soil fungal community assem-
blages. Specifically, we found that geographic
distance was more positively associated with
plant and soil microbial β-diversity than was
environmental distance (Fig. 1a). The result was
maintained even if we controlled for the influ-
ences of climatic distance, differences in soil pH
or both (Fig. 1b). Differences in climate were a
strong predictor of plant and soil microbial β-
diversity (Fig. 1a). However, when geographic
distance was controlled, plant β-diversity was
not significantly associated with climatic distance
(Fig. 1b). Differences in soil pH were more posi-
tively associated with soil bacterial β-diversity
(Spearman correlation coefficient, hereafter,
ρ = 0.34) than with soil fungal (ρ = 0.15) or plant
β-diversity (ρ = 0.07; Fig. 1).
Next, we assessed whether the geographic and

environmental distances meditate the relation-
ship between β-diversity and spatial turnover in
multiple ecosystem functions. Plant β-diversity
(ρ = 0.34) was a stronger predictor of the spatial

associations between β-diversity and abiotic factors (geographic, climatic, and soil pH distances). Lines represent
the trends of the bivariate associations. Spearman correlation coefficients (rho) and the lower and upper 95% con-
fidence intervals of simple Mantel tests are shown. (b) Partial Mantel tests for the bivariate associations between
abiotic factors and β-diversity. Symbol | represents partial Mantel tests. Variables in the left of | represent the inde-
pendent variables, and in the right of | represent the controlling independent variables. Points represent the
Spearman correlation coefficients (rho) and error bars 95% confidence intervals. Abbreviations are Geo, geo-
graphic distance; Clim, climatic distance; pH, soil pH distance. Geographic distance has a unit of km, and the
other distance metrics are unitless.

(Fig. 1. Continued)
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Fig. 2. Relationships between abiotic and biotic factors with spatial turnover in ecosystem function. Associa-
tions of spatial turnover in ecosystem function with abiotic factors (geographic, climatic, and pH distances) (a)
and β-diversity (b). Spearman correlation coefficients (rho) and the lower and upper 95% confidence intervals of
simple Mantel tests are shown. Lines represent the trends of the bivariate associations. Points in red represent
spatial turnover in multiple ecosystem functions that are significantly higher than null expectation, in blue lower
than null expectation, and in gray no difference from null expectation. (c) Partial Mantel tests for the bivariate
associations between β-diversity and spatial turnover in ecosystem function given geographic and environmental
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turnover of multiple ecosystem functions than
were geographic (ρ = 0.23), climatic (ρ = 0.15),
or soil pH (ρ = 0.09) distances (Fig. 2a, b). For
belowground communities, we found that soil
bacterial (ρ = 0.22) and soil fungal (ρ = 0.23) β-
diversity were as important, or even more impor-
tant, than geographic and environmental dis-
tances (Fig. 2a, b) in accounting for variability in
the spatial turnover of multiple ecosystem func-
tions.

Most interestingly, our null models showed
that, for any two communities, whether they
were close to one another or far apart (or with
either a low or high environmental difference),
spatial turnover in ecosystem function could be
high or low (i.e., the red points in Fig. 2a). This
pattern arises because the highest non-null val-
ues of spatial turnover in multiple ecosystem
functions were widely distributed across geo-
graphic and environmental distances. However,
we showed that large differences in multiple
ecosystem functions were always associated with
high β-diversity between communities (red
points in Fig. 2b illustrating that the non-null
highest values of differences in multiple ecosys-
tem functions were associated with that of β-
diversity). In addition, the relationships between
plant and soil microbial β-diversity and spatial
turnover in multiple ecosystem functions
remained positive and strong when we con-
trolled for the influences of geography, climate,
soil pH, and any combinations of the three fac-
tors (Fig. 2c). Our results were maintained when
we examined the spatial differences of the single
ecosystem functions (Appendix S1: Table S3).
However, we found that the effects of abiotic fac-
tors on the relationship between β-diversity and
spatial turnover in multiple ecosystem functions
depended on the identity of ecosystem functions
considered. For example, when abiotic factors
were controlled, plant β-diversity was positively
associated with plant aboveground biomass,
plant P, and soil extractable P. Soil bacterial β-
diversity was positively associated with root

biomass and soil total N, while soil fungal β-
diversity was only significantly associated with
plant aboveground biomass (Appendix S1:
Table S3).
Finally, we used SEMs to assess the direct and

indirect effects of geographic and environmental
distances on spatial turnover in ecosystem func-
tion through changes in above- and below-
ground β-diversity. SEMs indicated that 14% of
variance in spatial turnover in multiple ecosys-
tem functions was explained by plant and soil
fungal β-diversity (Fig. 3). Plant β-diversity (stan-
dardized path coefficient, hereafter βstd = 0.28)
was more directly and positively associated with
spatial turnover in multiple ecosystem functions
than was soil fungal β-diversity (βstd = 0.12;
Fig. 3; Appendix S1: Tables S4 and S5). Mean-
while, plant β-diversity was strongly associated
with soil fungal β-diversity (βstd = 0.47 in Fig. 3a;
βstd = 0.62 in Fig. 3b), and soil fungal β-diversity
was strongly associated with soil bacterial β-
diversity (βstd = 0.59 in Fig. 3a; βstd = 0.63 in
Fig. 3b). The models did not detect significant
direct effects of geographic or climatic distances
on spatial turnover in multiple ecosystem func-
tions (Fig. 3).

DISCUSSION

We found clear evidence that greater differ-
ences in the spatial turnover of multiple ecosys-
tem functions were associated with greater
differences in plant and soil microbial β-diversity,
but not geographic or environmental distances.
The bivariate associations between above- and
belowground β-diversity and spatial turnover in
multiple ecosystem functions were retained
when we controlled for geographic and environ-
mental distances. Moreover, spatial turnover in
multiple ecosystem functions was strongly asso-
ciated with plant β-diversity and was weakly
associated with soil fungal β-diversity. We found
indirect effects of soil bacterial β-diversity
through soil fungal β-diversity on spatial

distances. Xs are one of the groups of β-diversity (i.e., plant, bacterial, and fungi). Points represent the Spearman
correlation coefficients (rho) and error bars 95% confidence intervals. Details of the statistical summary are given
in Appendix S1: Table S3.

(Fig. 2. Continued)
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Fig. 3. Effects of geographic distance, climatic distance, and β-diversity on spatial turnover in ecosystem func-
tion. Plant β-diversity affects soil microbial β-diversity (a) and vice versa (b). Numbers next to arrows represent
standardized path coefficients (βstd). Double-headed arrows represent residual correlations. Width of the arrows
is scaled to the magnitude of βstd. R2 represents the proportion of variance explained by the predictors. Indices of
goodness-of-fit are given including χ2 statistic, degree of freedom, P value of the test statistic, comparative fit
index (CFI), root mean square error of approximation (RMSEA), and standardized root mean square residual
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turnover in multiple ecosystem functions. Our
results support our first hypothesis that plant
and soil microbial β-diversity determine the spa-
tial turnover of multiple ecosystem functions. In
addition, although our results support our sec-
ond hypothesis that abiotic factors mediate the
relationship between β-diversity and the spatial
turnover of multiple ecosystem functions, we
found that the impacts of geographic and envi-
ronmental distances on spatial turnover in multi-
ple ecosystem functions were mainly through
changes in above- and belowground species
composition. These novel findings highlight that
the legacies of historical events vs. contemporary
environmental factors should be incorporated for
a more nuanced understanding of the causes of
changes in above- and belowground species
composition and their consequences for multiple
ecosystem functions in naturally assembled com-
munities.

Mechanisms explaining above- and belowground
β-diversity effects on spatial turnover in multiple
ecosystem functions

Two potential mechanisms explain why β-
diversity, particularly of plants, is a stronger pre-
dictor of spatial turnover in multiple ecosystem
functions than is soil microbial β-diversity. First,
plant species differ in abundance (Soliveres et al.
2016a), dominance (Lohbeck et al. 2016), func-
tional traits (Lefcheck and Duffy 2015), and evo-
lutionary history (Cadotte et al. 2017), each of
which influences the magnitude of ecosystem
functions. The plant communities examined here
span several continents, capturing large species
pools that are likely to be influenced by a wide
range of evolutionary and ecological processes,
leading to wider trait dispersion in the plant
communities among sites (Seabloom et al. 2015).
In turn, the differences in functional traits among
plant species are major factors driving spatial dif-
ferences in multifunctionality (Roger et al. 2016,
Gross et al. 2017, Blesh 2018, Grman et al. 2018,
Villnäs et al. 2018). We found changes in species
abundance and dominance in plant species

composition did not influence the bivariate asso-
ciation between plant β-diversity and the spatial
turnover of multiple ecosystem functions (see
more detailed results in Appendix S1: Table S2).
Our results are supported by two empirical stud-
ies, which found minor effects of species abun-
dance on spatial variation in multifunctionality
in grasslands (Grman et al. 2018) and in subtropi-
cal coniferous forests (Li et al. 2021). Our find-
ings therefore support the idea that differences in
functional traits and evolutionary history are
likely the main mechanisms explaining plant β-
diversity effects on the spatial turnover of multi-
ple ecosystem functions.
A second explanation for the pattern we

observed is that differences in plant communities
are highly associated with differences in compo-
sition of other trophic levels (e.g., soil microor-
ganisms in this study), which promote multiple
ecosystem functions (Soliveres et al. 2016b,
Schuldt et al. 2018, Martinez-Almoyna et al.
2019, Anujan et al. 2021). Previous work from the
Nutrient Network using the same grassland sites
as this study found that decreases in plant β-
diversity were associated with the decreases in
soil microbial β-diversity (Prober et al. 2015) and
the extent of multifunctionality (α-
multifunctionality; Hautier et al. 2018). These
findings are in broad agreement with the results
presented here. Thus, we propose that taxonomic
covariance, or linkages among plant and soil
microbial communities, contribute to differences
in multiple ecosystem functions. For instance,
our work showed that soil fungal β-diversity
indirectly affected the spatial turnover of multi-
ple ecosystem functions through changes in plant
β-diversity or vice versa (Fig. 3). Although we
detected no direct effects of soil bacterial β-
diversity on the spatial turnover of multiple
ecosystem functions, soil bacterial β-diversity
was significantly associated with fungal β-
diversity, which indicates that bacterial β-
diversity could indirectly affect the spatial turn-
over of multiple ecosystem functions through
changes in soil fungal β-diversity.

(Fig. 3. Continued)

(SRMR). ***bootstrap P < 0.001 and **P < 0.01. Note the highly significant goodness of fit for the second model
(P = 0.002) suggests that the first model is likely the better model of the two. Details of the statistical summary
are given in Appendix S1: Tables S4 and S5.
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Indirect effects of abiotic factors on spatial
turnover in multiple ecosystem functions

The weak associations between geographic or
environmental distances and spatial turnover in
multiple ecosystem functions probably indicates
that other key abiotic factors are important but
were not measured in this study and thus cannot
be explored (e.g., soil parent material, soil types,
soil heterogeneity, and vegetation structure
(Grman et al. 2018, Hu et al. 2020, Song et al.
2020)). However, in our study, the most likely
explanation for the weak associations is that abi-
otic factors have indirect rather than direct effects
on spatial turnover in multiple ecosystem func-
tions, perhaps through their effects on commu-
nity composition (Allan et al. 2015, Grman et al.
2018). We used SEMs to test this idea and found
evidence that geographic and climatic distances
were not directly associated with the spatial turn-
over of multiple ecosystem functions (Fig. 3).
Our results are partially supported by an eleva-
tional study, which found that climate had indi-
rect effects on spatial turnover in multiple
ecosystem functions, while soil properties had
both direct and indirect effects on spatial turn-
over in multiple ecosystem functions (Martinez-
Almoyna et al. 2019). Despite our inability to
detect direct effects of abiotic factors, no studies
that we are aware of have examined the abiotic
effects of geographic and environmental dis-
tances combining the biotic effects of above- and
belowground β-diversity at continental scales.

Our findings highlight the potential roles of
legacies of historical events and contemporary
environmental factors on above- and below-
ground community assemblages. That is, plant
and soil microbial assemblages differed in differ-
ent locations and were not randomly distributed
among the grassland sites. Although abiotic fac-
tors had strong effects on plant and soil microbial
β-diversity, soil bacterial and fungal β-diversity
are more driven by geographic distance and dif-
ferences in climate and soil pH than was plant β-
diversity. This suggests that the spatial distribu-
tions of soil microorganisms are more driven by
past (e.g., dispersal limitations and past climatic
conditions) and contemporary environmental
conditions (e.g., climate and soil pH; Ladau et al.
2018, Nottingham et al. 2018) than is above-
ground plants. However, our findings indicate
that as grasslands face global threats from shrub

encroachment, conversion to agriculture, or are
lost to development, the functions and services
they provide will be more convergent with an
increase in aboveground community homoge-
nization than with soil microbial community
homogenization. In addition, we found soil bac-
terial β-diversity was more driven by climate and
soil pH than was soil fungal β-diversity. These
results suggest that different organismal types
differ in the processes of shaping community
composition assemblages. Our work therefore
supports a unified research framework to study
the mechanisms underlying the biogeography of
all life using the knowledge of macroecology
(Shade et al. 2018). Furthermore, we found that
different organismal types in above- and below-
ground had different influences on individual
ecosystem functions. This finding highlights the
importance of biodiversity in maintaining multi-
ple ecosystem functions and reinforces the role of
spatial differences in above- and belowground
species compositions as a mechanism of shaping
spatial differences in multiple ecosystem func-
tions.

CONCLUSIONS

Our work differs from classical experiments in
the study of biodiversity and ecosystem function
relationships (Fukami et al. 2001, Loreau and
Hector 2001, Hector et al. 2009, Jochum et al.
2020). We are not asking whether biodiversity is
related to an increase or decrease in a single
ecosystem function, nor are we asking whether
biodiversity is related to multiple ecosystem
functions (Byrnes et al. 2014). Instead, we exam-
ine what controls similarity in multiple ecosys-
tem functions. Although there is evidence that
soil fungal (Mori et al. 2018) and soil multi-
trophic (Martinez-Almoyna et al. 2019) β-
diversity are broadly linked to similarity in mul-
tiple ecosystem functions, our work provides evi-
dence that changes in aboveground plant species
composition are more associated with similarities
in multiple ecosystem functions in grasslands
around the world than with changes in soil
microbial composition. Importantly, the effects of
abiotic factors are largely indirect. These indirect
effects suggest that the impacts of past and ongo-
ing climatic and edaphic change on ecosystem
functions are mediated through their strong
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influences on plant and soil microbial communi-
ties. Those indirect effects, coupled with the
ongoing homogenization in above- and below-
ground community composition, have substan-
tial effects on the diversity of ecosystem
functions performed by grasslands. Therefore,
our work is consistent with the idea that spatial
variability in species composition contributes to
multiple ecosystem functions (Mori et al. 2018,
Winfree et al. 2018) and may be one mechanism
that interacts with environment and soil proper-
ties across spatial scales.
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