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 Global climate change has the potential to alter aquatic communities through changes in evapotranspiration and increased 
variability in precipitation. We used aquatic mesocosms to test the impacts of variable precipitation on population dynam-
ics of common mosquito (Culicidae) and midge (Chironomidae) larvae that inhabit vernal pools. In a mixed deciduous 
forest in northern Vermont, USA, we orthogonally crossed seven levels of mean water level (increased rainfall) with seven 
levels of water level coeffi  cient of variation (more variable rainfall) to simulate a broad array of climate change scenarios in 
49 experimental mesocosms.   

 Th e average abundance of Culicidae was highest at low water levels, whereas the average abundance of Chironomidae 
was highest at higher water levels and low variability in water level. Treatments and environmental and spatial covariates 
collectively explained 49% of the variance in mean abundance. For both taxa, we fi t hierarchical Bayesian models to each 
16-week time series to estimate the parameters in a Gompertz logistic equation of population growth with density depen-
dence. We found that Culicidae population growth rate increased with decreasing water levels and that 87% of the vari-
ance in Chironomidae density dependence could be explained by treatment. Collectively, these results suggest that climate 
change can alter abundances aquatic invertebrate taxa but not necessarily through the same mechanism on all populations. 
In the case of Culicidae the abundance is aff ected by changes in growth rate, and in Chironomidae by changes in the 
strength of density dependence.   
 Over the past decade, ecologists have used fi eld and laboratory 
experiments to document population and community 
responses to global climate change, including responses to 
elevated CO 2  (Ainsworth and Long 2005), increased tem-
perature (Visser and Holleman 2001), and increased vari-
ability in precipitation (Suttle et al. 2007). Some correlative 
studies have also examined the relationship between climate 
and population dynamics (Mysterud et al. 2001, Halkka 
et al. 2006, Turner et al. 2006, Tavecchia et al. 2007, Lima 
et al. 2008, Ogutu et al. 2008) by testing for relationships 
between time series of abundance and environmental cova-
riates (Ives 1995,  Å dahl et al. 2006). Experimental studies 
of the eff ects of climate change may provide stronger evi-
dence and more powerful results for forecasting (Krebs and 
Berteaux 2006), but they are still uncommon (Richmond 
et al. 2007). Using a manipulative fi eld experiment, we 
asked how climate change impactson the mean and vari-
ance of water level aff ect the population dynamics of aquatic 
invertebrates in aquatic mesocosms. 

 Studies on population dynamics and climate change 
usually rely on either long data sets that span contempo-
rary climate change (Adler and HilleRisLambers 2008, van 
de Pol et al 2010) or time series data that span natural cli-
matic fl uctuation such as the North Atlantic Oscillation 
(NAO) (Sæther et al 2000, Coulson et al 2001). Th ese 
studies construct models that examine how population size 
and density dependence track changes in the mean value of 
a variable such as NAO index (Sæther et al 2000), tempera-
ture or precipitation (Adler and HilleRisLambers 2008). 
While the mean values of precipitation and temperatures 
are increasing due to climate change, the variance around 
those means is also expected to increase (Hayhoe et al 
2008). It is equally important therefore that we understand 
how both the mean and variance of a variable aff ect popula-
tion dynamics (Benedetti-Cecchi 2003). To that end van de 
Pol et al (2010) used a long term data set for oyster catch-
ers to construct demographic that included both mean 
temperature and temperature variability. Th ey found that 
temperature mean was more important than variability for 
population persistence, but variability in temperature was 
important for juvenile survivorship. Th e results we present 
here complement work such as this by testing the impor-
tance the mean and variance in climate variables with a 
manipulative fi eld experiment. We created forty-nine arti-
fi cial vernal pond mesocosms in northern Vermont, and 
fully crossed seven levels of mean water level with seven 
levels of the coeffi  cient of variation (CV) in water depth 
to mimic climate change scenarios in vernal ponds due to 
altered precipitation. Th en using non-destructive in-situ 
sampling and we monitored populations of larval Culicidae 
1227



and Chironomidae over the course of a single fi eld season. 
With this data we constructed population dynamic models 
for each taxa and examined how model parameters varied 
with changes the mean and variance of water level.. 

 We predicted that both taxa would have increased popu-
lation size and decreased density dependence in deeper and 
less variable mesocosms. Deeper water levels should increase 
resources, habitat volume and thereby reducing density 
dependent mortality, whereas a higher CV generates more 
variable environments which tends to increase extinction 
rates and population variability (Boyce et al 2006, van de 
Pol et al 2010), especially in response to changes in rainfall 
(Drake 2005).  

 Methods  

 Study system 

 Regional climate change models predict a warming of 2 °  to 
3.5 ° C by 2100 under low emissions scenarios, and an even 
larger increase under high emission scenarios (Frumhoff  et 
al. 2006). Climate change scenarios for the northeast USA 
also predict an increased water budget in the winter/spring 
and increased defi cit in the summer/fall (Moore et al. 1997). 
Precipitation events are likely to become more variable, with 
longer periods of drought followed by more intense deluges 
(Sun et al. 2007, Kendon et al. 2008). Vernal ponds are fi sh-
less habitats that fi ll in the spring (vernal) or fall (autumnal) 
and hold water for at least four months (Zedler 2003) and 
represent ideal systems to study the eff ects of climate change. 
Climate change will alter these systems through increased 
evapotranspiration and more variable precipitation. Increased 
winter precipitation will increase initial pond volume, and 
more variable spring summer rainfall combined with greater 
evapotranspiration will increase the variability through the 
season of pond water level. 

 Our mesocosms supported a variety of invertebrate taxa 
that are found in natural vernal pools. Non-destructive 
insitu fi eld sampling of tubs did not allow us to consis-
tently distinguish individuals to genus and species, so we 
restricted our analyses to the family level. Th e insect fami-
lies Culicidae (mosquitoes) and Chironomidae (non-biting 
midges) were common enough in all 49 replicates (at least 
80% of the observations were  � 0 in all 49 treatments) 
tojustify time series analysis. Collectively, these families con-
stitute the majority of invertebrate biomass in vernal pools 
(Colburn 2004), and account for 90% of the total abun-
dance of invertebratessampled from our mesocosms. In vernal 
pools and many other aquatic habitats, these taxa play major 
ecological roles as omnivorous fi lter feeders (Culicidae) and 
detritivores (Chironomidae). 

 Forty-fi ve species of Culicidae have been recorded in 
Vermont, 10 of which have container-dwelling larva 
(Graham 2008). We identifi ed voucher samples to species 
and found fi ve species present:  Anopheles punctipennis, 
Culex restuans, C. pipiens, Ochlerotatus japonicus  and  O. trise-
riatus.  In our samples,  Culex  spp. were most common, and 
 Anopheles  was most rare.  Culex restuans  tends to be most 
abundant in Vermont from June to August, and  C. pipiens  
is most abundant from July to September (A. Graham pers. 
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comm.). Chironomidae voucher samples were identifi ed 
only tofamily because of the diffi  culty and time needed to 
identify material to the genus or species level. A 2003 sur-
vey of vernal ponds found that fi ve most common genera of 
Chironomidae were  Chironomus, Polypedilium, Limnophyes, 
Larsia  and  Phaenopsectra  (Burnham and Sorensen 2003) .  
Most of the species in our mesocosms were case-building 
Chironomids (Hartunpubl.), that rarely leave their tubes 
and feed only on material that they fi lter or gather from 
around their tubes (Armitage et al. 1994).   

 Experimental design 

 Th e experiment was established in a 25  �  25 m plot in a 
second-growth deciduous forest at the Univ. of Vermont 
Jericho Research Forest (UVM JRF) (44 ° 45 ’ N, 73 ° 00 ’ W), 
which has naturally occurring vernal ponds within the 
forest. Our experiment consisted of seven levels each of two 
treatments (mean water level and coeffi  cient of variation 
in water level; Benedetti-Cecchi 2003) applied to 49 arti-
fi cial mesocosms in a fully-crossed response surface design.
Although this design sacrifi ces replication, it allows a large 
parameter space to be effi  ciently explored with many levels 
of each factor (Inouye 2001, McCoy and Bolker 2008).
Mean water levels were expressed as a percentage of maxi-
mum container volume (20%, 30%, 40%, 50%, 60%, 
70%, 80% treatments). Coeffi  cient of variation (CV)
levels ranged from 0 to 60%. We parameterized a unique 
gamma distribution for each tub by fi rst calculating the 
standard deviation as s � m � CV where   μ   is the mean 
water level and CV is the coeffi  cient of variation in water 
level. Each mean and standard deviation was then used to 
fi nd the shape and rate parameters of a gamma distribu-
tion using the  ‘ optim ’  function in R 2.10 (R Development 
Core Team 2010). We then simulated weekly water levels 
for each mesocosm by taking 16 random draws from 
each unique gamma distribution, having bounds between 
0 and  ∞ , because it is the parametric distribution most 
often used to model rainfall (Husak et al. 2007). 

 Th is design encompasses a broad parameter space of 
future intraseasonal hydrological impacts on vernal pools. 
Th e climate change predictions of more rainfall in the 
winter and more variable rainfall in the spring and summer 
will have a variety of interannual eff ects beyond the scope 
of this study (e.g. changes in phenology), but this experi-
ment addresses the impact of within-year variability. Diff er-
ing mean water levels represent diff erent amounts of winter 
precipitation melt. Climate change models forecast more 
winter snowfall in the northeastern USA (Kendon et al. 
2008). At the same time, summer precipitation is expected 
to become more variable, with more days of intense storms 
(Sun et al. 2007). We simulated this increased variability by 
altering the coeffi  cient of variation in water level.   

 Establishment of treatments 

 Each experimental unit was a 205-l high-density poly-
ethylene plastic tub (100  �  50  �  33 cm). Natural vernal 
pools in Vermont have an average surface area of 86 m 2  
(range 20 – 967 m 2 ) and an average depth of 0.4 m 
(range 0.07 – 0.93 m; Burnham and Sorensen 2003). Our 
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mesocosms had a relatively small area, but did have realistic 
depth ranges. Mesocosms were laid out in April 2007 in an 
octagonal array, with each tub approximately 1.5 m from 
its nearest neighbor. Plastic fencing was installed around 
the entire array to prevent dogs and other large vertebrates 
from disturbing the mesocosms. In contrast to many classic 
cattle-tank experiments (Wilbur 1987), our mesocosms 
were left open for the duration of the experiment to allow 
for external colonization. Each of the 49 unique treatments 
was assigned randomly to one of the replicates. We seeded 
each mesocosm with approximately 300 ml of water from a 
well-mixed plankton tow and 4 l of an innoculum of detritus 
and insects from a nearby vernal pond. We fi lled each 
mesocosm with leaf litter from the surrounding forest to 
achieve a detrital depth of 1 – 2 cm. All mesocosms were 
then fi lled to their initial depth with fi ltered water from a 
nearby spring-fed well. We measured water levels weekly, 
and adjusted them according to their prescribed treatment 
by either adding well water, or drawing water levels down 
with a 1136 lph battery-powered pump. Th e pump hose 
was covered by two layers of 1 mm mesh to prevent macro-
invertebrate capture. At each census, we also measured pH, 
dissolved oxygen (DO), water temperature, air temperature 
and turbidity. We sampled each mesocosm by sweeping 
a 7.6  �  10 cm net (3 mm mesh) once through the water 
column, and once through the benthic material. To avoid 
destructive sampling, all animals were transferred to a sort-
ing tray in the fi eld, counted, identifi ed to the family level, 
and immediately returned to their mesocosm. We sampled 
invertebrates, measured abiotic variables, and then adjusted 
water levels weekly from 5 April  –  28 August 2007, yielding 
16 consecutive observations for each container.   

 Statistical analysis 

 We encountered some zeroes in our weekly counts so we fi rst 
added 1 to every number and then log transformed them to 
normalize our data (McArdle et al. 1990) in all our analyses. 
Average abundances were calculated by taking the mean of 
transformed abundances, eff ectively the geometric mean.  

 Average population size 
 With each mesocosm representing a single observation 
(n  �  49), we next fi t a multiple regression model with 
main eff ects for mean water level (MWL) and CV (WLCV) 
and their interaction: 

 yi � β0 � β1 � MWL � β2 � WLCV � β3 � MWL

 � WLCV � εi 

 For each taxon, we calculated the R 2  of the fi tted model and 
the statistical signifi cance of the regression coeffi  cients.   

 Effects of environmental covariates on average abundance 
 In order to take both unknown spatial eff ects and environ-
mental covariates into account, we used backwards stepwise 
regression to select the best model out of all our measured 
covariates. Th e values for covariates represent the average of 
sixteen measurements taken from each tub at the time we 
sampled invertebrates. Th e full general model was:

 yi � β0 � β1 � MWL � β2 � WLCV � β3 � MWL 
  � WLCV � β4 � D.O. � β5 � pH � β6 
  � Air temp � β7 � Water temp 

  where MWL is mean water level, WLCV is water level CV, 
yi is the mean of log (x  �  1) abundances of either Culicidae 
or Chironomidae in tub i, Air temp is measured air tem-
perature, pH is pH, DO is dissolved oxygen, Water temp is 
measured water temperature, Xcor and Ycor are the spatial 
coordinates of the replicate, β0 to β10 are fi tted regression 
coeffi  cients, and εi is the residual error. Model selection was 
conducted in R 2.10 (R Core Development Team 2010) 
with the step() function in the stats package.   

 Population dynamics and density dependence 
 To analyze the population dynamics of each time series, we 
used a hierarchical normal Bayesian model with a structure 
based on the population dynamic framework of Royama 
(1992) and Berryman (1999). We began with a discrete time 
Ricker equation (Royama 1992) 
 and removed the exponent by dividing both sides by Nt–1 
and taking the log of both sides. 
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formulation yields a discrete-time linear equation of density 
dependence (Dennis and Taper 1994). 
 Th e parameters in Eq. 3 have a simple ecological interpre-
tation:   α   is the population growth rate and   β   is the strength 
of density-dependence. With 49 unique time-series we used 
a hierarchical framework to construct full model for all series 
in which the growth rate at time  t  is a function of water level 
 j  and CV  k . An alternative form of this basic equation is the 
Gompertz logistic (GL) growth equation, which is the same 
as Eq.3, but uses the natural log of Nt � 1 (Ives et al. 2003). 
We used a GL model because our data showed an exponen-
tial decay of  r  with population size, which is linear in the 
GL model (Yang et al. 2008): 
 We are modeling the growth rate  r  at time  t  at water level 
 j  and CV k as an eff ect of a unique growth rate   α   jk  and 
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 α  density dependent term   β   jk  on the log of the population size 
plus one at the previous time step  X  [t – 1]jk  is the logarithm of 
population size. We modeled the parameters   α   and   β   as mul-
tivariate normal variables. We modeled the eff ects of water 
level and CV as rescaled normal variables with a mean of 0. 
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 Each term in Eq. 5 except for  μ  was modeled as: 
 Bj ∼ MVN(U, ΣB) (6) 
 where  U   �  (0,0), and   Σ   B  is the variance-covariance matrix 
for the diff erent eff ect sizes. Th is formulation allowed us to 
measure the covariance between slopes and intercepts in the 
GL model. 

 We fi t the models using Markov-chain Monte Carlo 
algorithms written in R 2.10 (R Core Development Team 
2010) using Gibbs samplers. We ran three chains with ran-
dom starting points and 10 000 iterations each with non-
informative priors. Convergence was assessed by plotting 
MCMC output and checking for autcorrelation and poor 
sample mixing, as well as using Gelman and Rubin’s conver-
gence statistic (Gelman and Rubin 1992) in the R package 
coda (Plummer et al. 2006). Individual estimates of slope 
and intercept parameters were then tested against treatment 
in a two-factor response surface multiple regression.      

 Results  

 Average abundance 

 Abundance of each taxon, averaged across the entire time-
series, was signifi cantly aff ected by water-level treatments.
For Culicidae, average abundance decreased with increasing 
water level (  β   1   �   – 0.04, p  �  0.008) but was not signifi -
cantly aff ected by water level CV (  β   2   �   – 1.02, p  �  0.21; 
Fig. 1). Th e model explained 27% of the total variation in 
average Culicidae abundance. For Chironomidae, average 
abundance was not aff ected by mean water level (  β   1   �  
0.006, p  �  0.58) but was aff ected by the CV of water level 
(  β   2   �   – 2.26, p  �  0.0005). However, the interaction 
between mean water level and CV was signifi cant (  β   3   �  
0.097, p  �  0.006) and abundance was unusually low 
when both mean water level and CV were low (Fig. 1). 
Th e model explained 49% of the total variance in average 
Chironomidae abundance.   

 Effects of environmental covariates on 
average abundance 

 Th ere was a moderate degree of intercorrelation between 
abundances and measured environmental covariates (Table 1). 
Th e model selection procedure identifi ed the best model 
for Culicidae as: 

 Culicidaei � 10.2 – 0.02 � MWL – 0.45 � WLCV – 0.32
  � D.O. – 0.42 � Air temp – 0.06 
  � Xcor – 0.1 � Ycor � εi 
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 with an R 2  of 0.49. For Chironomidae the model selected 
was: 

 Chironomidaei � 1.57 � 0.007 � MWL – 0.26 � WLCV 
     � 0.1 � MWL � WLCV 

 alsowith an R 2  of 0.49.Although each model was diff erent, 
the two experimental treatment eff ects were always present 
in the fi nal model. Culicidae responded to both treatments 
and a suite of environmental covariates as well as spatial loca-
tion. Chironomidae, on the other hand, responded only to 
the treatments but not to any of the covariates.   

 Population dynamics and density dependence 

 Culicidae population growth rate   α   varied negatively with 
mean water level (p  �  0.0004) with an R 2  of 0.43, and the 
density dependent term   β   varied negatively with both mean 
water level (p  �  0.006) and CV (p  �  0.04) with an R 2  of 0.18 
(Fig. 2). Population growth rate   α   for Chironomidae did not 
vary consistently with treatment (p  �  0.07 for mean water 
level and p  �  0.02 for CV, R 2   �  0.13) (Fig. 2). However, 
  Figure 1.     Mean log abundance for Culicidae (top panel), Chirono-
midae (bottom panel). Each square represents a single mesocosm 
with mean water level on the x-axis and coeffi  cient of water level 
variation on the y-axis. Lighter areas represent a small population 
size, and darker represent a large population size. Culicidae showed 
a negative response to both mean water level and water level CV. 
Chironomidae showed a positive relationship with mean water 
level, but a negative one with water level CV.  



the density dependent term   β   for Chironomideae responded 
strongly to treatment (R 2   �  0.87). Density dependence was 
strongest at low water levels and high CV (p  �  0.00001 for 
mean water level and p  �  0.00001 for CV) (Fig. 2).     

 Discussion 

 Both mean abundance (Fig. 1) and population model para-
meters (Fig. 2) in Culicidae and Chironomidae had diff er-
ent responses to the same treatment combinations. Culicidae 
had high abundance at low mean water levels (Fig. 1), whereas 
Chironomidae supported our initial hypothesis and had 
high abundance at high water levels with low CV (Fig. 1). 
Time-series trajectories of population change in individual 
treatments provide insight into how population growth 
aff ects abundance (Fig. 3).Culicidae populations in diff erent 
treatments showed similar population trajectories but with 
diff erent growth rates (  α  ), which resulted in high abundance 
in low mean water level tubs (Fig. 3). In contrast, Chirono-
midae abundance changed because of changes in the strength 
of density dependence (  β  ), with almost very weak density 
dependence in high mean water level and low CV treatments 
(dashed line Fig. 3). 

 Th ese changes in population dynamic parameters that 
diff er by taxa most likely refl ect their diff erent life histo-
ries. We believe that the higher growth rate at lower water 
levels in Culicidae is caused by female oviposition choice 
  Figure 2.     Estimates of the Gompertz logistic (GL) parameters for each treatment combination. Culicidae is in the left column with growth 
rate in the upper panel and density dependence in the lower panel, and Chironomidae is in the right column with growth rate in the upper 
panel and density dependence is the lower panel. Darker squares indicate either higher population growth rate or stronger density depen-
dence. Treatments explained 43% of the variance in Culicidae growth rates, and 87% of the variance in Chironomidae density dependence, 
with low R 2  values for the other parameters.  
  Table 1. Pearson correlation coeffecients between Culicidae and Chrionomidae abundance and environmental covariates and spatial 
co ordinates of each mesocosm. Population averages represent the mean log abundance of all 16 time points for each mesocosm. Averages 
for other physical variables represent the mean over all sampling dates. Spatial coordinates represent the tubs position in a simple Cartesian 
grid-space. Signifi cant Pearson product moment correlations (p  �  0.05) are bold and italicized.  

Culicidae Chironomidae pH Air temp Water temp DO x-coord

Culicidae – – – – – – –
Chironomidae –0.21 – – – – – –
pH –0.24 0.05 – – – – –
Air temp –0.06 –0.18  0.32 – – – –
Watertemp 0.01 –0.25 0.24  0.79 – – –
DO  –0.37  0.39 –0.10  –0.43  –0.43 – –
x-coord  –0.32 0.32 0.03 –0.27 –0.15  0.32 –
y-coord –0.03 0.14  –0.44  –0.86  –0.73  0.46 0.09
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because oviposition represents an increase in  ‘ births ’  of the 
larval population (which itself does not reproduce in a meso-
cosm). Female oviposition choice in Culicidae is sensitive 
to the presence of predators (Kifl awi et al. 2003, Blaustein 
et al. 2004), conspecifi cs (Edgerly et al. 1998), and habi-
tat nutrient quality (Reiskind and Wilson 2004, Mokany 
and Mokany 2006). Because predator density did not vary 
among our treatments, nutrient concentration and conspe-
cifi c abundance probably increased oviposition rates in low 
water tubs. Th e lower mean water means increased nutrient 
concentrations because the detritus type and amount was 
held constant. Once those treatments developed an initial 
population, females may have been attracted to mesocosms 
with high densities of conspecifi c larva as an indicator of 
future larval success (Edgerly et al. 1998). Culicidae abundance 
also varied with spatial position, temperature and dissolved 
O 2  concentration in mesocosms, which may refl ect direct 
and indirect eff ects of our treatments on larval abundance 
and female oviposition choices. 

 Much less is known about factors controlling popula-
tion dynamics in Chironimidae (Schmid 1992), but space 
limitation for tube-building larvae (Hooper et al. 2003) may 
explain the pattern of stronger density-dependence under 
conditions of low mean water level and high fl uctuations in 
1232
water level (Fig. 2d). In contrast to the results for Culici-
dae, none of the measured covariates aff ected Chironomidae 
abundance. Instead, the abundance levels were driven only 
by the two experimental treatments, suggesting that, that 
post-colonization processes related directly to water level and 
variability were most important for Chironomidae. 

 Four caveats apply to our experimental study. First, 
the sampling regime and population growth equations we 
used do not allow us to infer the precise mechanisms of 
density-dependence, because we cannot distinguish between 
eff ects of migration from those of birth and death. Second, 
our mesocosms excluded amphibians and their larval 
stages, which act as important predators in many aquatic 
ecosystems (Wilbur 1987, Morin et al. 1988, Wilbur and 
Fauth 1990). We are currently running long-term experi-
ments with larger experimental ponds that allow for amphib-
ian migration. Finally, as in previous studies that used in 
situ sampling of invertebrates in the fi eld (Gunnarson 1983, 
Caley 1995), it was necessary to lump species and genera 
into insect families. Th ere are many examples of species-
level diff erences among Culicidae (Spencer et al. 2002, 
Blaustein et al. 2004, Ellis 2008, Juliano 2009), so that 
density-dependence might be masked by pooling data at the 
family level. However it is diffi  cult to see how pooling could 
  Figure 3.     Representative time series for Culicidae in the left column and Chironomidae in the right column show the changes in growth 
rate and density dependence, with phase plots in the top row and raw data it the bottom row. Culicidae at low mean water levels (MWL) 
(MWL  �  6.6 cm, CV  �  0.6, solid line and circles) had the same density dependence (slope) but diff erent growth rate (intercept) as 
Culicidae at high MWL (MWL  �  23.1 cm, CV  �  0.6) (top left); and the actual population data with similar density dependence but 
diff ering growth rates (bottom left. Chironomidae at low MWL (6.6 cm) and high CV (0.5) (solid lines and circles) had a similar growth 
rate but drastically higher density dependence than a population at high MWL (23.1 cm) and low CV (0.0) (top right) and the actual data 
with similar rates of increase but diff erent-density dependent terms resulting in diff erent population sizes (bottom right).  



cause spurious patterns of density-dependence that system-
atically map onto diff erent hydroperiod regimes (Fig. 2). 
Th e fact that there were similar responses of the two fami-
lies in diff erent locations in the parameter space (Fig. 2, 4) 
also suggests that analyses are valid at the family level. 

 Finally we used a response surface design without rep-
lication. We had to choose between covering a larger para-
meter space or more replicates (Cottingham et al. 2005). We 
decided to cover a large parameter space because that would 
allow for the most robust inferences about future climates.
One potential problem is that priority eff ects could result in 
alternative stable states (Chase 2003). However the patterns 
of abundance and population parameters measured across 
the treatment space suggest that the signal of hydroperiod 
is stronger than the noise from stochastically assembled 
communities (Chase 2010), although stochastic community 
formation cannot completely disregarded. 

 Our results support other correlative studies that suggest 
climate change, specifi cally changes in precipitation, can 
alter population dynamics (Coulson et al. 2001, Ogutu et al. 
2008). We predict that with climate-induced decreases in 
mean water level and increases in variability, Culicidae will 
have increased population growth, and Chironimidae will 
show stronger density-dependence (Fig. 2), which could 
potentially increase the regional population size of Culici-
dae. Our results provide insights into the kind of population 
dynamics (Fig. 2), abundance patterns (Fig. 1) that can be 
expected with diff erent climate change scenarios scenarios.       
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