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Glossary
Biotic similarity A measure of the degree to which

two or more samples or assemblages are similar in

species composition. Familiar biotic similarity indices

include Sørensen’s, Jaccard’s, Horn’s, and Morisita’s

indices.

Hill numbers A family of diversity measures developed by

Mark Hill. Hill numbers quantify diversity in units of

equivalent numbers of equally abundant species.

Individual-based (abundance) data A common form of

data in biodiversity surveys. The data set consists of a vector

of the abundances of different species. This data structure is

used when an investigator randomly samples individual

organisms in a biodiversity survey.

Nonparametric asymptotic estimators Estimators of total

species richness (including Chao1, Chao2, abundance-

based coverage estimator (ACE), incidence-based coverage

estimator (ICE), and the jackknife) that do not assume a

particular form of the species abundance distribution (such

as a log-series or log-normal distribution). Instead, these

methods use information on the frequency of rare species in

a sample to estimate the number of undetected species in an

assemblage.

Phylogenetic diversity Adjusted diversity measures that

take into account the degree of relatedness among a set of

species in an assemblage. Other things being equal, an

assemblage of closely related species is less phylogenetically

diverse than a set of distantly related species.
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Rarefaction A statistical interpolation method of rarefying

or thinning a reference sample by drawing random subsets

of individuals (or samples) in order to standardize the

comparison of biological diversity on the basis of a

common number of individuals or samples.

Sample-based (incidence) data A common form of data

in biodiversity surveys. The data set consists of a set of

sampling units (such as plots, quadrats, traps, and transect

lines). The incidence or presence of each species is recorded

for each sampling unit.

Species accumulation curve A curve of rising biodiversity

in which the x-axis is the number of sampling units

(individuals or samples) from an assemblage and the y-axis

is the observed species richness. The species accumulation

curve rises monotonically to an asymptotic maximum

number of species.

Species diversity A measure of diversity that incorporates

both the number of species in an assemblage and some

measure of their relative abundances. Many species diversity

indices can be converted by an algebraic transformation to

Hill numbers.

Species richness The total number of species in an

assemblage or a sample. Species richness in an assemblage

is difficult to estimate reliably from sample data because it

is very sensitive to the number of individuals and the

number of samples collected. Species richness is a diversity

of order 0 (which means it is completely insensitive to

species abundances).
Introduction

Measuring Biological Diversity

The notion of biological diversity is pervasive at levels of or-

ganization ranging from the expression of heat-shock proteins

in a single fruit fly to the production of ecosystem services by a

terrestrial ecosystem that is threatened by climate change. How

can one quantify diversity in meaningful units across such

different levels of organization? This article describes a basic

statistical framework for quantifying diversity and making

meaningful inferences from samples of diversity data.

In very general terms, a collection of ‘‘elements’’ are con-

sidered, each of which can be uniquely assigned to one of

several distinct ‘‘types’’ or categories. In community ecology,

the elements typically represent the individual organisms, and

the types represent the distinct species. These definitions are

generic, and typically are modified for different kinds of di-

versity studies. For example, paleontologists often cannot

identify fossils to the species level, so they might study
diversity at higher taxonomic levels, such as genera or families.

Population geneticists and molecular biologists might be

interested in more fine-scale ‘‘omics’’ classifications of bio-

logical materials on the basis of unique DNA sequences

(genomics), expressed mRNA molecules (transcriptomics),

proteins (proteomics), or metabolic products (metabo-

lomics). Ecosystem ecologists might be concerned not with

individual molecules, genotypes, or species, but with broad

functional groups (producers, predators, and decomposers) or

specialized ecological or evolutionary life forms (understory

forest herbs and filter-feeding molluscs). However, to keep

things simple, this article will refer throughout to ‘‘species’’ as

the distinct categories of biological classification.

Although the sampling unit is often thought of as the in-

dividual organism, many species, such as clonal plants or

colonial invertebrates, do not occur as distinct individuals that

can be counted. In other cases, the individual organisms, such

as aquatic invertebrate larvae, marine phytoplankton, or soil

microbes are so abundant that they cannot be practically

counted. In these cases, the elements of biodiversity will
19-5.00424-X 195
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correspond not to individual organisms, but to the sampling

units (traps, quadrats, and sighting records) that ecologists use

to record the presence or absence of a species.
Species Richness and Traditional Species Diversity Metrics

The number of species in an assemblage is the most basic and

natural measure of diversity. Many important theories in

community ecology, including island biogeography, inter-

mediate disturbance, keystone and foundational species ef-

fects, neutral theory, and metacommunity dynamics make

quantitative predictions about species number that can be

tested with field observations and experiments in community

ecology. From the applied perspective, species richness is the

ultimate ‘‘score card’’ in efforts to preserve biodiversity in

the face of increasing environmental pressures and climate

change resulting from human activity. Species losses can occur

from extinction, and species increases can reflect deliberate

and accidental introductions or range shifts driven by climate

change.

Although species richness is a key metric, it is not the only

component of species diversity. Consider two woodlands, each

with 20 species of trees. In the first woodland, the 20 species

are equally abundant, and each species comprises 5% of the

total abundance. In the second woodland, one dominant

species comprises 81% of the total abundance, and each of the

remaining 19 species contributes only 1% to the total. Al-

though both woodlands contain 20 species, a visitor to the

first woodland would encounter most of the different tree

species in a brief visit, whereas a visitor to the second wood-

land might encounter mostly the single dominant species

(Figure 1).

Thus, a comprehensive measure of species diversity should

include components of both species richness and the relative

abundances of the species that are present. Such measures are
Community A: 20 species (p1…p20 = 0.05) 

Sample #1: 20 individuals, 15 species observed, 5

Sample #2: 20 individuals, 13 species observed, 7

Community B: 20 species (p1 = 0.81, p2…p20 = 0.0

Sample #1: 20 individuals, 3 species observed, 17

Sample #2: 20 individuals, 4 species observed, 16

Figure 1 Species richness sampling in a hypothetical walk through the wo
each row contains 20 characters, representing the first 20 individual trees t
maximally even, with each of the 20 species comprising 5% of the total abu
yielded 15 and 13 species, respectively. Community B is highly uneven, wit
abundance, and the remaining 19 species contributing only 1% each. In thi
three and four species, respectively.
referred to in this article as ‘‘traditional’’ diversity measures.

Ecologists have used dozens of different traditional diversity

measures, all of which assume (1) individuals within a species

are equivalent, (2) all species are ‘‘equally different’’ from one

another and receive equal weighting, and (3) diversity is

measured in appropriate units (individuals, biomass, and

percentage cover are most commonly used).
Phylogenetic, Taxonomic, and Functional Diversity

As noted in the previous section the first assumption of tra-

ditional diversity metrics (individuals within a species are

equivalent) can be relaxed by changing the operational def-

inition of ‘‘species’’ to other categories of interest. The second

assumption (all species are equally different from one an-

other) ignores aspects of phylogenetic or functional diversity,

but can also be incorporated through a generalization of

traditional diversity metrics.

For example, consider two woodlands with identical tree

species richness and evenness but with no shared species. The

species in the first woodland are all closely related oaks in the

same genus (Quercus). The species in the second woodland are

a diverse mix of oaks (Quercus) and maples (Acer), as well as

more distantly related pines (Pinus). Traditional species di-

versity metrics would be identical for both woodlands, but it is

intuitive that the second woodland is more diverse (see

Figure 2 for another example).

The concept of traditional diversity can therefore be ex-

tended to consider differences among species. All else being

equal, an assemblage of phylogenetically or functionally di-

vergent species is more diverse than an assemblage of closely

related or functionally similar species. Differences among

species can be based directly on their evolutionary histories,

either in the form of taxonomic classification (referred to as

taxonomic diversity) or phylogeny (referred to as phylogenetic
 species undetected

 species undetected

1)

 species undetected

 species undetected

ods. Each different symbol represents one of 20 distinct species, and
hat might be encountered in a random sample. Community A is
ndance. In this assemblage, the two samples of 20 individual trees

h one species (the open circle) representing 81% of the total
s assemblage, the two samples of 20 individual trees yielded only
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Figure 2 Phylogenetic diversity in species composition. The
branching diagram is a hypothetical phylogenetic tree. The ancestor
of the entire assemblage is the ‘‘root’’ at the top, with time
progressing toward the branch tips at the bottom. Each node
(branching point) represents a speciation or divergence event, and
the 21 branch tips illustrate the 21 extant species. Extinct species or
lineages are not illustrated. The five species in Assemblage I
represent an assemblage of five closely related species (they all
share a quite recent common ancestor). The five species in
Assemblage II represent an assemblage of five distantly related
species (they all share a much older common ancestor). All other
things being equal, the community of distantly related species would
be considered more phylogenetically diverse than the community of
closely related species.
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diversity (PD)) or indirectly, based on their function (referred

to as functional diversity). These metrics relax the second as-

sumption discussed in the section Species Richness and Tra-

ditional Species Diversity Metrics (all species are ‘‘equally

different’’ from one another) by weighting each species by a

measure of its taxonomic classification, phylogeny, or

function.
Biotic Similarity

These concepts of species diversity apply to metrics that are

used to quantify the diversity of single assemblages. However,

the concept of diversity can also be applied to the comparison

of multiple assemblages. Suppose again that a person visits

two woodlands, both of which have 10 trees species, each

species contributing 10% to the abundance of individual trees

within the woodland. Thus, in terms of species richness and

species diversity, the two woodlands are identical. However,

the two woodlands may differ in their species composition. At

one extreme, they may have no species in common, so they are

biologically distinct, in spite of having equal species richness

and species diversity. At the other extreme, if the list of tree

species in the two woodlands is the same, they are identical in

all aspects of diversity (including taxonomic, phylogenetic,

and functional diversity). More typically, the two woodlands

might have a certain number of species found in both

woodlands and a certain number that are found in only one.

Biotic similarity quantifies the extent to which two or more

sites are similar in their species composition and relative

abundance distribution. The concept of biotic similarity is

important at large spatial scales for the designation of bio-

geographic provinces that harbor distinctive species
assemblages with both endemic and shared elements. Biotic

similarity is also a key concept underlying the measurement of

beta diversity, the turnover in species composition among a set

of sites. In an applied context, biotic similarity indices can

quantify the extent to which distinct biotas in different regions

have become homogenized through losses of endemic species

and the introduction and spread of nonnative species. Dif-

ferences among species in evolutionary histories and func-

tional trait values can also be incorporated in similarity

measures.
Bias in the Estimation of Diversity

The true species richness and relative abundances in an as-

semblage are unknown in most applications. Thus species

richness, species diversity, and biotic similarity must be esti-

mated from samples taken from the assemblage. If the sample

relative abundances are used directly in the formulas for tra-

ditional diversity and similarity measures, the maximum

likelihood estimator (MLE) of the true diversity or similarity

measure is obtained. However, the MLEs of most species di-

versity measures are biased when sample sizes are small. When

sample size is not sufficiently large to observe all species, the

unobserved species are undersampled, and – as a consequence

– the relative abundance of observed species, on average, is

overestimated.

Because biotic diversity at all levels of organization is often

high, and biodiversity sampling is usually labor intensive,

these biases are usually substantial. Even the simplest com-

parison of species richness between two samples is compli-

cated unless the number of individuals is identical in the two

samples (which it never is) or the two samples represent the

same degree of coverage (completeness) in sampling. Ignoring

the sampling effects may obscure the influence of overall

abundance or sampling intensity on species richness. Attempts

to adjust for sampling differences by algebraic rescaling (such

as dividing S by n or by sampling effort) lead to serious dis-

tortions and gross overestimates of species richness for small

samples. Thus, an important general objective in diversity

analysis is to reduce the undersampling bias and to adjust for

the effect of undersampled species on the estimation of di-

versity and similarity measures. Because sampling variation is

an inevitable component of biodiversity studies, it is equally

important to assess the variance (or standard error) of an es-

timator and provide a confidence interval that will reflect

sampling uncertainty.
The Organization of Biodiversity Sampling Data

This article introduces a common set of notation for de-

scribing biodiversity data (Colwell et al., 2012). Consider an

assemblage consisting of N� total individuals, each belonging

to one of S distinct species. Species i has Ni individuals, so thatPS
i ¼ 1 Ni ¼N�. The relative frequency pi of species i is Ni/N

�,

so that
PS

i ¼ 1 pi ¼ 1. Note here that N�, S, Ni, and pi represent

the ‘‘true’’ underlying abundance, species richness, and relative

frequencies of species. These quantities are unknowns, but can

be estimated, and one can make statistical inferences by taking
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random samples of data from such an assemblage. This article

distinguishes between two sampling structures.
Individual-Based (Abundance) Data

The reference sample is a collection of n individuals, drawn at

random from the assemblage with N� total individuals. In the

reference sample, a total of Sobs species are observed, with Xi

individuals observed for species i, so that
PS

i ¼ 1 Xi ¼ n (only

species with Xi40 contributes to the sum). Thus, the data

consist of a single vector of length S, whose elements are the

observed abundances of the individual species Xi. In this

vector, there are Sobs nonzero elements.

The abundance frequency count fk is defined as the number of

species each represented by exactly k individuals in the refer-

ence sample. Thus, f1 is the number of species represented by

exactly one individual (‘‘singletons’’) in the reference sample,

and f2 is the number of species represented by exactly two

individuals (‘‘doubletons’’). In this terminology, f0 is the

number of undetected species: species that are present in the

assemblage of N� individuals and S species, but were not

detected in the reference sample of n individuals and Sobs

species. Therefore, Sobs þ f0 ¼ S.
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Figure 3 Species accumulation curve. The curve was generated by
assuming an assemblage of 20 species whose relative abundances
were created from a broken stick distribution (Tokeshi, 1999). The x-
axis is the number of individuals sampled and the y-axis is the number
of species observed. The species accumulation curve is the smooth red
line, which represents the average of 1000 random draws, sampling
with replacement, at each level of abundance. The shaded envelope
represents a symmetric 95% bootstrap confidence interval, calculated
from the estimated variance of the random draws. The shape of this
species accumulation curve is typical: it rises rapidly at first as the
common species are initially encountered, and then continues to rise
very slowly, as much more sampling is needed to encounter all of the
rare species. For random samples of 500 or more individuals, it is
almost always the case that all 20 species are encountered.
Sample-Based (Incidence) Data

The reference sample for incidence data consists of a set of R

replicate sampling units (traps, plots, quadrats, search routes,

etc.). In a typical study, these sampling units are deployed

randomly in space within the area encompassing the assem-

blage. However, in a temporal study of diversity, the R sampling

units would be deployed in one place at different independent

points in time (such as an annual breeding bird census at a

single site). Within each sampling unit, the presence or absence

of each species is recorded, but abundances or counts of the

species present are not needed. The data are organized as a

species-by-sampling-unit incidence matrix, in which there are

i¼1 to S rows (species), j¼1 to R columns (sampling units),

and the matrix entry Wij¼1 if species i is detected in sampling

unit j, and Wij¼0 otherwise. If sampling is replicated in both

time and space, the data would be organized as a three-di-

mensional matrix (species� sites� times). However, most

biodiversity data sets are two dimensional, with either spatial or

temporal replication, but not both.

The row sum of the incidence matrix Yi ¼
PR

j ¼ 1 Wij de-

notes the incidence-based frequency of species i for i¼1 to S.

Yi is analogous to Xi in the individual-based abundance vector.

Species present in the assemblage but not detected in any

sampling unit have Yi¼0. The total number of species ob-

served in the reference sample is Sobs (only species with Yi40

contribute to Sobs).

The incidence frequency count Qk is the number of species

each represented exactly Yi¼k times in the incidence matrix

sample, 0rkrR. For the incidence matrix,
PR

k ¼ 1 kQk ¼PS
i ¼ 1 Yi and Sobs ¼

PR
k ¼ 1 Qk. Thus, Q1 represents the num-

ber of ‘‘unique’’ species (those that are each detected in only

one sample) and Q2 represents the number of ‘‘duplicate’’

species (those that are each detected in exactly two samples).

The zero frequency Q0 denotes the number of species among
the S species in the assemblage that were not detected in any

of the R sampling units.
Species Richness Estimation

A simple count of the number of species in a sample is usually a

biased underestimate of the true number of species, simply

because increasing the sampling effort (through counting more

individuals, examining more sampling units, or sampling a

larger area) inevitably will increase the number of species ob-

served. The effect is best illustrated in a species accumulation

curve, in which the x-axis is the number of individuals sampled

or sampling units examined and the y-axis is the number of

species observed (Figure 3). The first individual sampled always

yields one species, so the origin of an abundance-based species

accumulation curve is the point [1,1]. If the next individual

sampled is the same species, the curve stays flat with a slope of

zero. If the next individual sampled is a different species, the

curve rises to two species, with an initial slope of 1.0. Samples

from the real world fall between these two idealized extremes,

and the slope of the curve measured at any abundance level is

the probability that the next individual sampled represents a

previously unsampled species. The curve is steepest in the early

part of the collecting, as the common species in the assemblage

are detected relatively quickly. The curve continues to rise as
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more individuals are sampled, but the slope becomes shallower

because progressively more sampling is required to detect

the rare species. As long as the sampling area is sufficiently

homogeneous, all of the species will eventually be sampled and

the curve will flatten out at an asymptote that represents the

true species richness for the assemblage. For incidence data, a

similar accumulation curve can be drawn in which the x-axis

represents the number of sampling units and the y-axis is the

number of species recorded.
Interpolating Species Richness with Rarefaction

A single empirical sample of individuals or a pooled set of

sampling units represents one point on the species accumu-

lation curve, but the investigator has no way of directly de-

termining where on the curve this point lies. To compare the

richness of two different samples, they must be standardized

to a common number of individuals, for abundance samples

(Sanders, 1968; Gotelli and Colwell, 2001, 2011). Rarefaction

represents an interpolation of a biodiversity sample to a

smaller number of individuals for purposes of comparison

among samples. Typically, the abundance of the larger sample

is rarefied to the total abundance of the smaller sample to

determine if species richness (or any other biodiversity index)

differs for a common number of individuals (Figure 4). For

incidence data, rarefaction interpolates between the reference

sample and a smaller number of sampling units.

Let Sind(m) represent the expected number of species in a

random sample of m individuals from the reference sample of
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Figure 4 Standardized comparison of species richness for two
individual-based rarefaction curves. The data represent summary
counts of carabid beetles that were pitfall-trapped from a set of young
pine plantations (o20 years old; upper curve) and a set of old pine
plantations (20–60 years old; lower curve). The solid lines are the
rarefaction curves, calculated from eqn [2], and the shaded polygons
are the 95% confidence intervals, calculated from the unconditional
variance eqn [5]. The young plantation samples contained 243
individuals representing 31 species, and the old plantation samples
contained 63 individuals representing nine species. The dashed and
dotted vertical line illustrates a species richness comparison
standardized to 63 individuals, which was the observed abundance
in the smaller of the two data sets. Data from Niemelä J, Haila Y,
Halme E, et al. (1988) The distribution of carabid beetles in fragments
of old coniferous taiga and adjacent managed forest. Annales
Zoologici Fennici 25: 107–199.
n individuals (mon). If the true probabilities (p1, p2, y, ps) of

each of the S species in the assemblage were known, and

species frequencies (X1, X2, y, XS) follow a multinomial

distribution for which the total of all frequencies is n, and cell

probabilities (p1, p2, y , pS), then

SindðmÞ ¼ S�
XS

i ¼ 1

ð1� piÞm ½1�

However, the true pi values are unknown, and there is only the

reference sample with observed species abundances Xi. An

unbiased estimator for Sind(m) (Hurlbert, 1971) is

~S indðmÞ ¼ Sobs �
X
Xi40

n� Xi

m

� �
=

n

m

� �� �
½2�

For incidence-based data, the corresponding equation

(Shinozaki, 1963) is

~SsampleðrÞ ¼ Sobs �
X
Yi40

R� Yi

r

� �
=

R

r

� �� �
½3�

where roR is the number of sampling units in the rarefied

reference sample. The statistical model for rarefaction is sam-

pling without replacement from the reference sample.

If the area of each of the sample plots has been measured,

species richness can also be interpolated from a Coleman curve,

in which the expected species richness on an island (or sample

plot) of area a is based on a Poisson model and is a function

of the total area A of the archipelago (or the summed areas of

all the sample plots) (Coleman et al., 1982):

~SareaðaÞ ¼ Sobs �
X
Xi40

1� a

A

� �Xi

½4�

Although the variance from the hypergeometric distribution

has traditionally been used to calculate a confidence interval

for a rarefaction curve, this variance is conditional on the

observed sample. It therefore has the undesirable property of

converging to zero when the abundance level reaches the

reference sample size. More realistically, the observed sample

is itself drawn from a much larger assemblage, so the con-

fidence intervals generally should widen as the reference

sample size is reached. This unconditional variance for

abundance data is calculated as follows (Colwell et al., 2012):

s2
indðmÞ ¼

Xn

k ¼ 1

ð1� akmÞ2fk � ½~SindðmÞ�2=Sest ½5�

where Sest denotes an estimated species richness (such as

Chao1, described in the section Species Richness Estimation)

and akm ¼
n� k

m

� �,
n

m

� �
for krn�m, akm¼0 otherwise.

The corresponding unconditional variance for incidence data

is (Colwell et al., 2004)

s2
sampleðrÞ ¼

XR

k ¼ 1

ð1� bkrÞ2Qk � ½~SsampleðrÞ�2=Sest ½6�

where Sest denotes a sample-based estimated species richness

(such as Chao2, described in the section Species Richness
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Estimation) and bkr ¼
R� k

r

� �,
R

r

� �
for krR� r, bkr¼0

otherwise. These variances allow for the calculation of 95%

confidence intervals on expected species richness for any

abundance level smaller than the observed sample (Figure 4).

Because all rarefaction curves converge at small sample

sizes toward the point [1,1] (for abundance data) or a small

number of species (for incidence data), sufficient sampling is

necessary for valid comparisons of curves. Although there are

no theoretical guidelines, empirical examples suggest that

samples of at least 20–50 individuals per sample (and pref-

erably many more) are necessary for meaningful comparisons

of abundance-based rarefaction curves.

Rarefaction curves also require comparable sampling

methods (forest samples collected from pitfall traps cannot be

validly compared to prairie samples collected from baits),

well-defined assemblages of discrete countable individuals

(for abundance-based methods), random spatial arrangement

of individuals, and random, independent sampling of

individuals (or larger sampling units for incidence-based

methods). If the spatial distribution of individuals is intras-

pecifically clumped in space, abundance-based rarefaction will

overestimate species richness, but this problem can be effect-

ively countered by increasing the spatial grain of sampling or

using incidence-based methods. Perhaps the chief disadvan-

tage of rarefaction is that point comparisons force an investi-

gator to rarefy all samples down to the smallest sample size in

the data set, so sufficient sampling is important. However,

calculation and comparison of complete rarefaction curves

and their extrapolation, with unconditional variances, help to

overcome this problem (Colwell et al., 2012).
Nonparametric Asymptotic Species Richness Estimators

Whereas rarefaction is a method for interpolating species diver-

sity data, asymptotic richness estimators are methods for ex-

trapolating species diversity out to the (presumed) asymptote,

beyond which additional sampling will not yield any new spe-

cies. Three strategies have been used to try to estimate the

asymptote of the species accumulation curve. Parametric curve

fitting uses the shape of the species accumulation curve in its

early phase to try and predict the asymptote. Asymptotic func-

tions, such as the negative exponential distribution, the Weibull

distribution, the logistic equation, and the Michaelis–Menten

equation, are fit (usually with nonlinear regression methods) to

the species accumulation data, and the asymptote can be esti-

mated as one of the parameters of this kind of model. The chief

problem is that this does not work well in comparisons with

empirical or simulated data sets, mainly because it does not

directly use information on the frequency of common and rare

species, but simply tries to forecast the shape of the rising curve.

Several different functional forms may fit the same data set

equally well, but yield drastically different estimates of the

asymptote. Because curve fitting is not based on a statistical

sampling model, the variance of the resulting asymptote cannot

be evaluated without further assumptions, and theoretical

difficulties arise for model selection.

A second strategy is to use the abundance or incidence

frequency counts (fk or Qk) and fit them to a species abundance
distribution, such as the log-series or the log-normal distri-

bution. The area under such a fitted curve is an estimate of the

total number of species present in the assemblage. The chief

weakness of these methods is that simulations show that they

work well only when the correct form of the species abun-

dance distribution is already known, but this is never the case

for empirical data. It is often not clear that existing statistical

models fit empirical data sets very well, which often depart

from expected values in the frequencies of the rare species.

Moreover, there is no guarantee that two different assemblages

follow the same kind of distribution, which complicates the

comparison of curves.

The most successful methods so far have been nonpara-

metric estimators (Colwell and Coddington, 1994), which use

the rare frequency counts to estimate the frequency of the

missing species (f0 or Q0). For incidence data, these estimators

are similar to mark-recapture models that are used in dem-

ography to estimate the total population size and are based on

statistical theorems developed by Alan Turing and I.J. Good

from cryptographic analysis of Wehrmacht coding machines

during World War II. The basic concept of their theorem is that

abundant species – which are certain to be detected in samples

– contain almost no information about the undetected spe-

cies, whereas rare species – which are likely to be either un-

detected or infrequently detected – contain almost all the

information about the undetected species.

If there are many undetectable or ‘‘invisible’’ species in a

hyperdiverse assemblage, it will be impossible to obtain a

good estimate of species richness. Therefore, an accurate lower

bound for species richness is often of more practical use than

an imprecise point estimate. Based on the concept that rare

species carry the most information about the number of un-

detected species, the Chao1 estimator uses only the numbers

of singletons and doubletons (and the observed richness) to

obtain the following lower bound for the expected asymptotic

species richness (Chao, 1984):

ŜChao1 ¼
Sobs þ f 2

1 =ð2f2Þ if f240

Sobs þ f1ðf1 � 1Þ=2 if f2 ¼ 0

(
½7�

with an associated variance estimator of (if f240)

vârðŜChao1Þ ¼ f2
1

2

f1
f2

� �2

þ f1
f2

� �3

þ 1

4

f1
f2

� �4
" #

½8�

For incidence data, Chao2 is the corresponding estimator for

species richness. It incorporates a sample-size correction factor

(R� 1)/R (Chao, 1987):

ŜChao2 ¼
Sobs þ ½ðR� 1Þ=R�Q2

1=ð2Q2Þ if Q240

Sobs þ ½ðR� 1Þ=R�Q1ðQ1 � 1Þ=2 if Q2 ¼ 0

(
½9�

with a variance estimator of (if Q240)

vârðŜChao2Þ ¼Q2
A

2

Q1

Q2

� �2

þ A2 Q1

Q2

� �3

þ 1

4
A2 Q1

Q2

� �4
" #

½10�

where A¼(R� 1)/R. When f2¼0 in the Chao1 estimator or

Q2¼0 in the Chao 2 estimator, the variance formulas in
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eqns [9] and [10] need modification; the modified variances

are available in Chao and Shen (2010).

The Chao1 estimator may be very useful for data sets in

which it is too time consuming to count the frequencies of all

abundance classes, but it is relatively easy to count just the

number of singleton and doubleton species. Chao1 and

Chao2 are intuitive and very easy to calculate, and often per-

form just as well as more complex asymptotic estimators.

A more general approach is to use information on the

frequency of other rare species, not just singletons and dou-

bletons. A cut-off value k denotes frequencies of rare species

(frequencyrk) and abundant species (frequency4k). The

cut-off k¼10 works well with many empirical data sets.

Let the total number of observed species in the abundant

species group be Sabun ¼
P

i4kfi and the number of observed

species in the rare species group be Srare ¼
Pk

i ¼ 1 fi. Define

nrare ¼
Pk

i ¼ 1 ifi and the coverage estimate Ĉrare ¼ 1� f1=nrare.

Coverage is the estimated proportion of the total number of

N� individuals in the assemblage that is represented by the

species recorded in the sample. It is a reliable measure of the

degree of sample completeness. The Abundance-based Coverage

Estimator (ACE) is (Chao, 2005)

ŜACE ¼ Sabun þ
Srare

Ĉrare

þ f1

Ĉrare

ĝ2
rare ½11�

where ĝ2
rare is the square of the estimated coefficient of vari-

ation of the species relative abundances:

ĝ2
rare ¼max

Srare

Ĉrare

Pk
i ¼ 1 iði� 1Þfi

ðSk
i ¼ 1ifiÞðSk

i ¼ 1ifi � 1Þ � 1,0

� 	
½12�

An approximate variance for the ACE can be obtained using a

standard asymptotic approach.

For incidence data, there is a corresponding Incidence-based

Coverage Estimator (ICE). As with ACE, first a cut-off point k is

selected that partitions the data into an infrequent species

group (incidence frequency not larger than k) and a frequent

species group (incidence frequency larger than k). The cut-off

k¼10 is recommended. Denote the number of species in the

frequent group by Sfreq ¼
P

i4kQi and the number of species

in the infrequent group by Sinfreq ¼
Pk

i ¼ 1 Qi. The estimated

sample coverage for the infrequent group is Ĉinfreq ¼ 1�Q1=Pk
i ¼ 1 iQi. Let the number of sampling units that include

at least one infrequent species be Rinfreq. Then ICE is

expressed as

ŜICE ¼ Sfreq þ
Sinfreq

Ĉinfreq

þ Q1

Ĉinfreq

ĝ2
infreq ½13�

where ĝ2
infreq is the squared estimate of the coefficient of vari-

ation of the species relative incidences:

ĝ2
infreq ¼max

Sinfreq

Ĉinfreq

Rinfreq

Rinfreq � 1

 �

(

�
Pk

i ¼ 1 i i� 1ð ÞQiPk
i ¼ 1 iQi


 � Pk
i ¼ 1 iQi � 1


 �� 1,0

)
½14�

In addition to Chao1, Chao2, ACE, and ICE, the jackknife

method provides another class of nonparametric estimators

of asymptotic species richness. Jackknife techniques were
developed as a general method to reduce the bias of a biased

estimator. Here the biased estimator is the number of species

observed in the sample. The basic idea with the jth-order

jackknife method is to consider subdata by successively de-

leting j individuals from the data. The first-order jackknife

turns out to be

Ŝjk1 ¼ Sobs þ
n� 1

n
f1ESobs þ f1 ½15a�

That is, only the number of singletons is used to estimate the

number of unseen species. The second-order jackknife esti-

mator, which uses singletons and doubletons, has the fol-

lowing form:

Ŝjk2 ¼ Sobs þ
2n� 3

n
f1 �

ðn� 2Þ2

nðn� 1Þ f2ESobs þ 2f1 � f2 ½15b�

Higher-order jackknife estimators are available, although they

give increasingly less weight to the more common species

frequencies.

For replicated incidence data, the first-order jackknife for R

samples is

Ŝjk1 ¼ Sobs þ
R� 1

R
Q1 ½16a�

and the second-order jackknife is

Ŝjk2 ¼ Sobs þ
2R� 3

R
Q1 �

ðR� 2Þ2

RðR� 1ÞQ2 ½16b�

All jackknife estimators can be expressed as linear combin-

ations of frequency counts, and thus approximate variances

and confidence intervals can be directly obtained.
Extrapolating Species Richness

Based on a reference sample of n individuals, the extrapolation

or prediction problem is to estimate the expected number of

species Sind(nþm�) in an augmented sample of nþm� indi-

viduals from the assemblage (m�40). Under a simple multi-

nomial model, Shen et al. (2003) derived the following useful

predictor with an asymptotic variance:

~S indðnþm�Þ ¼ Sobs þ f̂ 0 1� 1� f1

nf̂ 0

 !m�
2
4

3
5

ESobs þ f̂ 0 1� exp �m�

n

f1

f̂ 0

 !" #
½17�

where f̂ 0 is an estimator for f0 (the number of undetected

species). It is suggested that f̂ 0 can be obtained by using either

the Chao1 estimator ðf̂ 0 ¼ ŜChao1 � SobsÞ or the ACE estimator

ðf̂ 0 ¼ ŜACE � SobsÞ.
The corresponding extrapolation formula and its asymp-

totic variance for the Coleman area-based Poisson sampling

model were developed by Chao and Shen (2004). An esti-

mator for the expected number of species Sarea(Aþ a�) in an
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augmented area Aþ a�(a�40) based on a reference sample of

area A is

~Sarea Aþ a�ð Þ ¼ Sobs þ f̂ 0 1� exp � a�

A

f1

f̂ 0

 !" #
½18�

where f̂ 0 is the same as in the individual-based model.

For sample-based data with R sampling units comprising

the reference sample, Chao et al. (2009, Appendix A) de-

veloped a Bernoulli-product model and derived the following

estimator for the expected number of species Ssample(Rþ r�) in

an augmented set of Rþ r� sampling units (r�40) from the

assemblage:

~SsampleðRþ r�Þ ¼ Sobs þ Q̂0 1� 1� Q1

Q1 þ RQ̂0

� �r�
" #

ESobs þ Q̂0 1� exp
�r�Q1

Q1 þ RQ̂0

� �� �
½19�

Here Q̂0, which is an estimator for Q0, can be obtained from

either the Chao2 estimator Q̂0 ¼ ŜChao2 � Sobs


 �
or the ICE

Q̂0 ¼ ŜICE � Sobs


 �
.

For each of the these models, Colwell et al. (2012) linked

the interpolation (rarefaction) curve and the corresponding
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Figure 5 A smoothed rarefaction and extrapolation curve. The x-axis
is the number of individual, geo-referenced, dated ant specimens in
New England, and the y-axis is the observed number of species. The
total collection (the reference sample, filled circle) included 127 species
and 20,225 individual records. The solid curve is the rarefaction curve
interpolated from the reference sample. The dashed curve is the
extrapolation, which extends to a minimum asymptotic estimator
(Chao1) of B135 species (open diamond). This number accords well
with an independent estimate of an additional eight species that occur
in suitable habitat in New York and Quebec. These eight species are
likely to occur in New England, but so far they have not been collected.
However, the extrapolation to reach the Chao1 estimator extends to
over 70,000 museum records, and the confidence interval (shaded
polygon) is therefore fairly broad. The data set was compiled from
museum records and private collections of ants sampled throughout
the New England states of the USA (RI, CT, MA, VT, NH, and ME)
between 1900 and 2011. Data modified from Ellison AM, Gotelli NJ,
Farnsworth EJ, and Alpert GD (2012) A Field Guide to the Ants of New
England. New Haven, CT: Yale University Press.
extrapolation (prediction) curve to yield a single smooth curve

meeting at the reference sample (Figure 5). They also derived

95% (unconditional) confidence intervals for the interpolated

and extrapolated richness estimates. Thus, rigorous statistical

comparison can be performed not only for rarefaction but also

for extrapolated richness values. This link helps to avoid the

problem of discarding data and information from larger sam-

ples that is necessary for comparisons using the traditional

rarefaction method. However, the extrapolations become highly

uncertain if they are extended beyond approximately double the

reference sample size. For both individual- and sample-based

data, the additional sample size needed, beyond the reference

sample, to attain the estimated asymptotic species richness, or

to detect a specified proportion of asymptotic richness, is pro-

vided in Chao et al. (2009) and Colwell et al. (2012).
Species Diversity

Species Diversity Metrics

Although species richness is the most popular and intuitive

measure for characterizing diversity, the section Species Rich-

ness Estimation emphasizes that it is a very difficult parameter

to estimate reliably from small samples, especially for hyper-

diverse assemblages with many rare species. Species richness

also does not measure the evenness of the species abundance

distribution. Over the span of many decades, ecologists have

proposed a plethora of diversity measures that incorporate

both species richness and evenness, using both parametric and

nonparametric approaches (Magurran, 2004).

For example, parametric approaches assume a particular

species abundance distribution (such as the log-normal or

gamma) or a species rank abundance distribution (such as the

negative binomial or log series), and then estimate parameters

from the distribution model that quantify the heterogeneity

among species in their relative frequencies. However, as with

the estimation of asymptotic richness, these methods often do

not perform well unless the ‘‘true’’ species abundance distri-

bution is known, which is never the case (Colwell and Cod-

dington, 1994; Chao, 2005).

Nonparametric methods make no assumptions about the

mathematical form of the underlying species abundance dis-

tribution, and they have been widely used not only in ecology

but also in information science, economics, genetics, and

linguistics (see Jost, 2007; Jost et al., 2011; Chao and Jost, in

press; Tuomisto, this volume for reviews). The most popular

of these measures is the Shannon entropy,

HSh ¼ �
XS

i ¼ 1

pi logpi ½20�

where S is the number of species in the assemblage and the ith

species relative abundance is pi. Shannon entropy quantifies

the uncertainty in the species identity of a randomly chosen

individual in the assemblage. Another measure that has been

widely used in economics and genetics, as well as in ecology, is

the Gini–Simpson index,

HGS ¼ 1�
XS

i ¼ 1

p2
i ½21�
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which measures the probability that two randomly chosen

individuals (selected with replacement) belong to two differ-

ent species. The measure 1�HGS ¼
PS

i ¼ 1 p2
i is referred to as

the Simpson index. With an adjustment for N�, the total

number of individuals in the assemblage, the Gini–Simpson

index is closely related to the ecological index PIE (Hurlbert,

1971), the probability of an interspecific encounter:

PIE¼ ½N�=ðN� � 1Þ�HGS ½22�

which measures the probability that two randomly chosen

individuals (selected without replacement) belong to two dif-

ferent species. Both PIE and the Gini–Simpson index have a

straightforward interpretation as a probability. When PIE is

applied to species abundance data, it is equivalent to the slope

of the individual-based rarefaction curve measured at its base.

However, the units of the Gini–Simpson index and PIE are

probabilities that are bounded between 0 and 1, and the units

of Shannon entropy are logarithmic units of information.

These popular complexity measures do not behave in the same

intuitive way as species richness (Jost, 2007).

The ecologist MacArthur (1965) was the first to show that

Shannon entropy (when computed using natural logarithms)

can be transformed to its exponential exp(HSh), and the

Gini–Simpson index can be transformed to 1= 1�HGSð Þ ¼
1=
PS

i ¼ 1 p2
i , yielding two new indices that measure diversity in

units of species richness. In particular, these transformed in-

dices measure diversity in units of ‘‘effective number of spe-

cies’’ – the equivalent number of equally abundant species

that would be needed to give the same value of the diversity

measure. When all species are equally abundant, the effective

number of species is equal to the richness of the assemblage.

These converted measures, like species richness itself, sat-

isfy an important and intuitive property called the ‘‘replication

principle’’ or the ‘‘doubling property’’ (Hill, 1973): if N

equally diverse assemblages with no shared species are pooled

in equal proportions, then the diversity of the pooled assem-

blages should be N times the diversity of each single assem-

blage. Simple examples show that Shannon’s entropy and

Gini–Simpson measures do not obey the ‘‘replication prin-

ciple.’’ However the transformed values of these indices do

obey the replication principle.
Hill Numbers

The ecologist Mark Hill incorporated the transformed Shan-

non and Gini–Simpson measures, along with species richness,

into a family of diversity measures later called ‘‘Hill numbers,’’

all of which measure diversity as the effective number of

species. Different Hill numbers qD are defined by their ‘‘order’’

q as (Hill, 1973)

qD ¼
XS

i ¼ 1

p
q
i

 !1=ð1�qÞ

½23a�

This equation is undefined for q¼1, but in the limit as q tends

to 1:

1D ¼ lim
q-1

qD ¼ exp �
XS

i ¼ 1

pi logpi

 !
¼ expðHshÞ ½23b�
The parameter q controls the sensitivity of the measure to

species relative abundance. When q¼0, the species relative

abundances do not count at all (no ‘‘discounting’’ for uneven

abundances), and 0D equals species richness. When q¼1, the

Hill number 1D is the exponential form of Shannon entropy,

which weighs species in proportion to their frequency and can

be roughly interpreted as the number of ‘‘typical species’’ in

the assemblage (Chao et al., 2010; Chao and Jost, in press).

When q¼2, 2D equals 1/(1�HGS), which heavily weights the

most common species in the assemblage; the contribution

from rare species is severely discounted. The measure 2D can

be roughly interpreted as the number of ‘‘very abundant

species’’ in the assemblage. Because all Hill numbers of higher

order place increasingly greater weight on the most abundant

species, they are much less sensitive to sample size (number of

individuals or plots surveyed) than the most popular Hill

numbers (q¼0, 1, 2). Hill numbers with negative exponents

can also be calculated, but they place so much weight on rare

species they have poor sampling properties.

Thus, the measure of diversity using Hill numbers can

potentially depend on the order q that is chosen. However,

because all Hill numbers need not be integers, and all have

common units of species richness, they can be portrayed on a

single graph as a function of q. This ‘‘diversity profile’’ of

effective species richness versus q portrays all of the infor-

mation about species abundance distribution of an assem-

blage (Figure 6). The diversity profile curve is a decreasing

function of q (Hill, 1973). The more uneven the distribution

of relative abundances, the more steeply the curve declines.

For a perfectly even assemblage, the profile curve is a constant

at the level of species richness.
Estimation of Hill Numbers

All of the Hill numbers (including species richness) as well as

the untransformed Gini–Simpson index and Shannon entropy

are sensitive to the number of individuals and samples col-

lected. The sample-size dependence diminishes as q increases

because the higher-order Hill numbers are more heavily

weighted by frequencies of common species, and the estimates

of those frequencies are not very sensitive to sample size. In

contrast, with increasing numbers of individuals or samples

collected, rare species continue to be added to the sample,

making richness and other low Hill numbers more sample size

dependent.

The MLE for the Gini–Simpson index, ĤGS,MLE ¼ 1�PS
i ¼ 1 ðXi=nÞ2, is biased downward, and the bias in some cases

can be substantial. The minimum variance unbiased estimator

(MVUE) of the Gini–Simpson index has the following rela-

tionship to its MLE:

ĤGS,MVUE ¼ 1�
XS

i ¼ 1
½XiðXi � 1Þ�=½nðn� 1Þ�

¼ ½n=ðn� 1Þ�ĤGS,MLE ½24a�

This MVUE is equivalent to the estimator of PIE and is

relatively invariant to sample size. Thus, a nearly unbiased

estimator for Hill number of order 2 is

2D̂ ¼ 1=
XS

i ¼ 1
½XiðXi � 1Þ�=½nðn� 1Þ� ½24b�
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Figure 6 Diversity profile for assemblages of differing evenness.
The x-axis is the order q in the Hill number (eqn [23a]), and is
illustrated for values of q from 0 to 5. The y-axis is the calculated
Hill number (the equivalent number of equally abundant species).
Each of the four assemblages has exactly 100 species and 500
individuals, but they differ in their relative evenness: (1) completely
even assemblage (black solid line): each species is represented by
five individuals; (2) slightly uneven assemblage (red dashed line): 50
species each represented by seven individuals and 50 species each
represented by three individuals (this structure is denoted as {50� 7,
50� 3}); (3) moderately uneven assemblage (green dotted line):
{22� 10, 28� 5, 40� 3, 10� 2}; (4) highly uneven assemblage (blue
dash–dot line): {1� 120, 1� 80, 1� 70, 1� 50, 3� 20, 3� 10,
90� 1}. For q¼0, the Hill number is species richness, which is equal
to 100 for all assemblages. Because Hill numbers represent the
equivalent number of equally abundant species, the curve for the
perfectly even assemblage (black solid line) does not change as q is
increased. Larger values of q place progressively more weight on
common species, so the equivalent number of equally abundant
species is much lower for the more uneven assemblages than for
more even assemblages.
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For an integer qZ2, a similar derivation leads to a nearly

unbiased estimator for qD.

qD̂ ¼
XS

i ¼ 1
½XiðXi � 1Þ?ðXi � qþ 1Þ�

n

=½nðn� 1Þ?ðn� qþ 1Þ�
o1=ð1�qÞ

½24c�

These estimators for qZ2 are almost independent of sample

size, because all the higher-order Hill numbers are mainly

dominated by the number of very abundant species. The es-

timated diversity profile curve is thus generally slowly varying

for qZ2.

The estimation of entropy has been well studied in infor-

mation science, physics, and statistics. Unfortunately, an un-

biased estimator for Shannon entropy does not exist for any

fixed sample size of n. As noted earlier, using Xi/n as a simple

estimator of the true pi value yields the MLE of entropy, which

is negatively biased. An estimator of Shannon entropy with

low bias is the following Horvitz–Thompson-type estimator
(Chao and Shen, 2003):

ĤSh ¼ �
XS

i ¼ 1

~pi logð~piÞ
1� ð1� ~piÞ

n ½25a�

where ~pi ¼ ðXi=nÞð1� f1=nÞ is an estimator of the true pi. Only

the detected species contribute to the summation because
~pi ¼ 0 for any undetected species. The denominator 1�
ð1� ~piÞ

n is the estimated probability that the ith species is

detected in the sample, and the inverse of this probability is

used as a weight for the ith species. Thus, the larger the

probability of detection, the smaller the weight in the Horvitz-

Thompson estimator. The weights adjust the estimator to

compensate for missing species. For q¼1, a low-bias estimator

of the Hill number is

1D̂ ¼ exp �
XS

i ¼ 1

~pi logð~piÞ
1� ð1� ~piÞ

n

 !
½25b�

In summary, the statistical properties of Hill numbers de-

pend on the order q. Equation [24b] is a nearly unbiased

estimator of diversity for q¼2, and eqn [25b] is a low-bias

estimator for q¼1. As discussed in the section Species richness

estimation, total species richness (0D¼S) is much more dif-

ficult to estimate because it is very sensitive to rare species that

are often undetected, even in relatively large samples. Several

nonparametric species richness estimators that can be used for

estimating 0D are provided in the section Nonparametric

Asymptotic Species Richness Estimators. Then an estimated

diversity profile can be constructed by plotting fqD̂; q¼
0,1,2,3,yg with respect to q, based on estimators given in

eqns [24b], [24c], and [25b]. The variance of each estimator in

the profile can be approximated by a standard asymptotic

method, and a 95% confidence interval can thus be con-

structed as the estimator71.96 s.e. for each value of q, if the

sample size is sufficiently large.
Taxonomic and PD

To quantify taxonomic or PD, species are placed on a

branching tree (a cladogram) that describes their evolutionary

relationships (Figure 2). The base of the tree represents the

ancestral taxon, the branching forks (nodes) represent speci-

ation or divergence events, the branch tips represent the

contemporary species (not all of which may be represented in

any particular assemblage), and time is measured in the ver-

tical axis, increasing from the base of the tree to the branch

tips. (For paleontological applications, the tips may be extinct

lineages.) All other things being equal, an assemblage in

which all the species are closely related and concentrated in

one region of the tree should be less diverse than an assem-

blage in which the same number of species is widely distrib-

uted among distant branch tips of the tree.

This article distinguishes two types of phylogenetic trees:

ultrametric and nonultrametric trees. A tree is called ultra-

metric if all branch tips are the same distance from the basal

node. For example, if the branch lengths are proportional to

divergence time, the tree is ultrametric. A Linnean taxonomic

tree, in which species are simply classified into a taxonomic

hierarchy (Kingdom, Phylum, Class, Order, Family, Genus, and
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Figure 7 Calculation of mean phylogenetic diversity and branch
diversity. In this hypothetical rooted phylogenetic tree, the ancestor
to the assemblage is depicted at the top, and there are three extant
species living at the present, depicted at the bottom, with relative
abundances (p1, p2, p3) ¼ (0.2, 0.3, 0.5). The tree is ultrametric, so
the total branch length from the ancestor to any descendant species
in the present is the same. To evaluate the phylogenetic diversity at
the time T ¼ 5 time steps in the past, we first create the set BT

which includes five branches with lengths (L1, L2, L3, L4, L5) ¼ (4,
1, 1, 3, 1) and the corresponding abundances (a1, a2, a3, a4, a5) ¼
(p1, p2, p3, p2þ p3, p1þ p2þ p3). We next measure the lineage
diversity qD(t) at any time steps 0 o t o T. We use three different
‘‘sampling times’’ as examples; these three sampling times
correspond to the three distinct assemblages that would be
represented by diversity sampling at three points in the past. For the
first sampling time, t¼0.5, lineage diversity qD(t ) is measured as the
Hill numbers for three lineages (species) with relative abundances
(p1, p2, p3); for the second sampling time t¼3, lineage diversity
qD(t ) is measured as the Hill numbers for two lineages (species)
with relative abundances (p1, p2þ p3); for the third sampling time
t¼4.5, lineage diversity qD(t ) is measured as the Hill numbers for
only one lineage (species) with relative abundance p1þ p2þ p3¼1.
The average of these Hill numbers qD(t ) over the interval [� T, 0]
gives the mean phylogenetic diversity qD ðT Þ of order q over T time
steps. The branch diversity is qPD(T)¼T � qD ðT Þ: These two
diversities can be calculated for any fixed TZ0; their pattern as a
function of T is plotted in Figure 8. (For example, if T is changed to
the tree height T�¼4 (distance between tree base and tips), then the
branch set includes four branches (L1, L2, L3, L4)¼(4, 1, 1, 3) with
the corresponding abundances (a1, a2, a3, a4)¼(p1, p2, p3, p2þ p3),
and the lineage diversity is averaged over [� 4, 0] to obtain qD ðT�Þ
and qPD(T �)¼T� � qD ðT�Þ:)
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Species), can be regarded as a special case of an ultrametric

tree. In contrast, if the branch lengths are proportional to the

number of base-pair changes in a given gene, or some other

measure of genetic or morphological change, some branch tips

may be farther in absolute time from the basal node than other

branch tips, and such trees are nonultrametric.

Pielou (1975) was the first to notice that the concept of

diversity could be broadened to consider differences among

species. The earliest taxonomic diversity measure is the cladistic

diversity (CD), which is defined as the total number of taxa or

nodes in a taxonomic tree that encompasses all of the species

in the assemblage (Vane-Wright et al., 1991). Another pion-

eering work is Faith’s (1992) PD, which is defined as the sum

of the branch lengths of a phylogeny connecting all species in

the target assemblage. In both CD and PD, species abundances

are not considered.

C.R. Rao’s quadratic entropy was the first diversity measure

that accounted for both phylogeny and species abundances

(Rao, 1982). It is a generalization of the Gini–Simpson index:

QRao ¼
X

i,j

dijpipj ½26a�

where dij denotes the phylogenetic distance between species i

and j, and pi and pj denote the relative abundance of species i

and j. This index measures the average phylogenetic distance

between any two individuals randomly selected from the as-

semblage. For the special case of no phylogenetic structure (all

species are equally related to one another), dii¼0 and dij¼1

(ia j), and QRao reduces to the Gini–Simpson index.

The phylogenetic entropy Hp is defined as a generalization of

Shannon’s entropy to incorporate phylogenetic distances

among species (Allen et al., 2009):

HP ¼ �
X

i

Liai logai ½26b�

where the summation is over all branches, Li is the length of

branch i, and ai denotes the summed abundance of all species

descended from branch i. The notation a (abundance) here is

not the same as that (for area) in eqn [4].

The replication principle can be generalized to phylo-

genetic or functional diversity: When N completely distinct

trees (no shared nodes during the fixed time interval of

interest) with equal diversities are combined, the diversity of

the combined tree is N times the diversity of any individual

tree. Simple examples can show that neither QRao nor Hp

satisfies this replication principle. As with traditional diversity

measures, QRao and Hp can be transformed into measures that

do obey the replication principle. In an ultrametric tree with

tree height T� (the time interval between the tree base and

tips), the transformed measures are, respectively, exp(Hp/T
�)

and 1/[1� (QRao/T�)].

For ultrametric trees, in addition to the order q, a time

parameter T is required to generalize Hill numbers to measure

PD in an interval from � T time steps to the present time. The

generalized phylogenetic metric is a time-averaged measure of

lineage diversity (Hill numbers) at any moment t over the time

interval [� T, 0]. The lineage diversity qD(t) at any moment t is

measured by taking a ‘‘cross-section’’ and finding the lineages

that are intersected (Figure 7). The relative abundance of each

lineage is defined as the sum of the relative abundances of all
of the descendants of that lineage in the present-day assem-

blage. Thus, qD(t) can be quantified by a Hill number. The

average of these Hill numbers qD(t) over the interval [� T, 0]

gives the mean PD of order q over T time steps (Chao et al.,

2010):

qDðTÞ ¼
X
iABT

Li

T
a

q
i

( )1=ð1�qÞ

½27�

where BT denotes the set of all branches in the time interval

[� T, 0], Li is the length (duration) of branch i in the set BT,

and ai is the total abundance of extant species descending

from branch i; see Figure 7 for a hypothetic ultrametric tree.
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This measure qDðTÞ gives the mean effective number of

maximally distinct lineages (or species) T time steps in the

past. The diversity of a tree with qD ðTÞ¼z in the time period

[� T, 0] is the same as the diversity of an assemblage con-

sisting of z equally abundant and maximally distinct species

with all branch lengths T.

The branch diversity or phylogenetic diversity qPD(T) of

order q through T time steps before present is defined as the

product of qD ðTÞ and T . The measure qPD(T) given below

quantifies ‘‘the total effective number of lineage-lengths or

lineage-time steps’’ (Chao et al., 2010)

qPD Tð Þ ¼ T � qDðTÞ ¼
X
iABT

Li
ai

T

� �q
( )1=ð1�qÞ

½28�

If q¼0 and T¼T� (tree height), then 0PD(T) reduces to Faith’s

PD. It also reduces to CD in a taxonomic tree if the branching
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phylogenetic diversity (upper right panel) as a function of the number of tim
structure of the phylogenetic tree in Figure 7, assuming (p1, p2, p3)¼(0.2,
profile of qPD(T) (lower left panel) as a function of order q for T¼4 (tree h
(lower right panel) as a function of order q for T¼0, 4, and 5, assuming (p
branch diversity for T¼0 is 0 as all branch lengths are 0. The mean phylog
p3)¼(0.2, 0.3, 0.5).
of each Linnaean taxonomic category is assigned a time step of

unit length. A PD profile can be constructed by plotting both
qPD(T) and qD ðTÞ as a function of T for q¼0, 1, and 2. It is

also informative to construct another diversity profile by

plotting qPD(T) and qD ðTÞ as a function of order q for some

selected values of temporal perspective T. See Figure 8 for a

numerical example. In most applications, ecologists are

interested in the case T¼T� (tree height) or the divergence

time between the species group of interest and its nearest

outgroup. The divergence time of the most recent common

ancestor of all extant taxa is another useful comparison.

For nonultrametric trees, the time parameter T is general-

ized to T, where T ¼
P

iAB
T
Liai represents the abundance-

weighted mean base change per species and BT denote the set

of branches connecting all focal species. The diversity of a

nonultrametric tree with mean evolutionary change T is the

same as that of an ultrametric tree with a time step T.
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Therefore, the diversity formula for a nonultrametric tree is

obtained by replacing T in the qD ðTÞ and qPD(T) with T.

Equation [27] can also describe taxonomic diversity, if the

phylogenetic tree is a Linnaean tree with L levels (ranks), and

each branch is assigned unit length. It also describes func-

tional diversity, if a dendrogram can be constructed from a

trait-based distance matrix using a clustering scheme (Petchey

and Gaston, 2002). Thus, Hill numbers can be effectively

generalized to incorporate taxonomy, phylogeny, and function

and provide a unified framework for measuring biodiversity

(Chao and Jost, in press).

Estimation of phylogenetic and functional diversity from

small samples has not been well studied. As with the estima-

tion of simple Hill numbers, phylogenetic diversity qD ðTÞ and
qPD(T) can be accurately estimated only for q¼2. Like the

Gini–Simpson index, the MVUE of Rao’s quadratic entropy

exists under a multinomial model:

Q̂MVUE ¼
X

i,j

dijXiXj=½nðn� 1Þ� ½29�

Thus, 2D ðTÞ and 2PD(T) can be estimated by a nearly un-

biased measure using this estimator based on the transfor-

mation 2D ðTÞ¼1/[1� (QRao/T)]. With sufficient sampling,

these estimators of PD of order q¼2 are almost independent

of sample size. Further research is needed for the development

of accurate estimators of PD measures with q¼1 and 0.
Biotic Similarity

Incidence-Based Similarity Indices

The earliest published incidence-based measure of relative

compositional similarity is the classic Jaccard index from

1900. A number of incidence-based similarity measures have

been proposed since then (see Jost et al., 2011, for a review).

The Jaccard index and the Sørensen index (proposed in 1948)

are the most widely used ones, and both were originally de-

veloped to compare the similarity of two assemblages. Let S1

be the number of species in Assemblage 1, S2 be the number

of species in Assemblage 2, and S12 be the number of shared

species. The Jaccard similarity index¼S12/(S1þ S2� S12) and

the Sørensen similarity index¼2S12/(S1þ S2). A rearrange-

ment of the Sorensen index¼1/[0.5(S12/S1)�1þ0.5(S12/

S2)�1] reveals that it is the harmonic mean of two proportions:

S12/S1 (the proportion of the species in the first assemblage

that are shared with the second) and S12/S2 (the proportion of

the species in the second assemblage that are shared with the

first). The Jaccard index compares the number of shared spe-

cies to the total number of species in the combined assem-

blages, whereas the Sørensen index compares the number of

shared species to the mean number of species in a single as-

semblage. The Jaccard index is thus a comparison based on

total diversity, whereas the Sørensen index is a comparison

based on local diversity.

When one assemblage is much richer than the other, both

Sørensen and Jaccard indices become very small. Although the

low similarity value reflects the true difference between the

two assemblages, in some applications it can be more in-

formative to normalize a similarity measure so that maximum
overlap¼1.0. Lennon et al. (2001) proposed such a modifi-

cation to the Sørensen index, and it takes the form S12/min(S1,

S2); see Jost et al. (2011) for details and comparisons.

When more than two assemblages are compared, a typical

approach is to use the average of all pairwise similarities as a

measure of global similarity. However, the pairwise similarities

calculated from data tend to be correlated and are not in-

dependent. Most importantly, pairwise similarities cannot

fully characterize multiple-assemblage similarity when some

species are shared across two, three, or more assemblages

(Chao et al., 2008). It is easy to construct numerical examples

in which all pairwise similarities are identical in two sets of

assemblages, but the global similarities for the two sets are

different.

The two-assemblage incidence-based Jaccard and Sørensen

indices have been extended to multiple assemblages. Assume

that there are N assemblages and there are Sj species in the jth

assemblage and S species in the combined assemblage. Let S

denote the average number of species per assemblage. The

multiple-assemblage Jaccard similarity index¼ðS=S� 1=NÞ=
ð1� 1=NÞ. The multiple-assemblage Sørensen similarity

index¼ðN � S=SÞ=ðN � 1Þ. When N¼2, these two measures

reduce to their classical two-assemblage measures. These two

measures are decreasing functions of Whittaker’s beta diversity

for species richness, which is S=S. When N assemblages are

identical, beta diversity (q¼0) is S=S¼1, and thus both Jac-

card and Sørensen similarity indices¼1. When N assemblages

are completely distinct (no shared species), beta diversity

(q¼0) is S=S¼N, and thus both Jaccard and Sørensen simi-

larity indices¼0.

These incidence-based similarity indices are widely used in

ecology and biogeography because of their simplicity and easy

interpretation. In most ecological studies, these indices are

estimated from observed richness in sample data. The re-

sulting estimates are generally biased downward, and the bias

increases when sample sizes are small or species richness is

large. They could become biased upward when shared species

are common and endemic species are very rare (Chao et al.,

2005, p. 149). The classic pairwise Jaccard and Sorensen

similarity indices calculated from sample data generally

underestimate the true similarity mainly because they do not

account for shared species at both sites that were not detected.

One strategy could be to use asymptotic species richness es-

timators (see Species Richness Estimation) to estimate species

richness in each assemblage and also to estimate species

richness in the combined assemblage, and then substitute the

estimated values into the similarity formulas. However, this

strategy inevitably inflates the variance and often renders the

resulting estimate useless. A major statistical concern is that,

based on incidence data alone, bias correction and measure-

ments of variances are impossible. Consequently, the inter-

pretation of any incidence-based index based on sample

values or estimated values becomes difficult or misleading for

comparing two (or more) highly diverse assemblages based on

limited data. Only with abundance data can one correct for

undersampling bias, as explained in the next section.

Classical incidence-based similarity indices treat abundant

and rare species equally, which oversimplifies the relation-

ships between assemblages. If species abundances can be

measured, they should be used for a more accurate
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representation (and better statistical estimation) of the simi-

larity of assemblages.
Abundance-Based Similarity Indices

Assume that in the combined assemblages, there are S species.

Denote the relative abundance vector for the S species in the

jth assemblage by (p1j,p2j,y,psj), some of them may be 0.

Thus, for N assemblages, there are N sets of abundances

{(p1j,p2j,y,psj); j¼1,2,y,N}. A sample of nj individuals is

taken from the jth assemblage and there are N sets of sample

frequencies {(X1j,X2j,y,Xsj); j¼1,2,y,N}.

For two-assemblage cases, one of the most popular abun-

dance-based similarity metric is the Horn overlap measure

(Horn, 1966), which is based on Shannon’s entropy:

SH ¼
1

log2

XS

i ¼ 1

pi1

2
log 1þ pi2

pi1

� �
þ pi2

2
log 1þ pi1

pi2

� �� �
½30�

Another popular overlap measure is the Morisita–Horn

similarity measure (Morisita, 1959), based on the Simpson

index:

SMH ¼
PS

i ¼ 1 pi1pi2PS
i ¼ 1 p2

i1 þ
PS

i ¼ 1 p2
i2

h i
=2

¼ 1�
PS

i ¼ 1 ðpi1 � pi2Þ2PS
i ¼ 1 p2

i1 þ
PS

i ¼ 1 p2
i2

½31�

Since each of the indices [30] and [31] equals unity if and only

if pi1¼pi2 for all i, these two indices match relative abundances

on a species-by-species basis. When the two assemblages are

equally diverse and consist entirely of equally common spe-

cies, the Morisita–Horn index, the Horn index, and the

Sørensen index are all equal, and all of these indices give the

proportion of shared species in an assemblage.

The first expression in eqn [31] for the Morisita-Horn index

has an important probabilistic interpretation. If one indi-

vidual is selected randomly from each assemblage, then the

probability that the two selected individuals belong to

the same shared species is
P

pi1pi2, the numerator in eqn [31].

The denominator in eqn [31] represents a normalizing con-

stant, which is the average of two such probabilities for two

individuals drawn from the same assemblages. In this prob-

abilistic interpretation, the abundant species will contribute

the most to the probability that two randomly selected indi-

viduals belong to the same species. As a result, in a hyperdi-

verse assemblage, the index is dominated by a few abundant

species and the relatively rare species (even if there are many

of them) have little effect. The index is therefore likely to be

resistant to undersampling, because the influential abundant

species are always present in samples.

The following MLE of the Morisita–Horn index is always in

the range [0, 1], but it has been shown that this MLE sys-

tematically underestimates the true similarity.

~SMH, MLE ¼
2
PS

i ¼ 1ðXi1=n1ÞðXi2=n2ÞPS
i ¼ 1ðXi1=n1Þ2 þ

PS
i ¼ 1ðXi2=n2Þ2

½32�
A better estimator that is nearly unbiased has the following form,

although it may exceed the theoretical maximum value of 1:

~SMH ¼
2
PS

i ¼ 1ðXi1=n1ÞðXi2=n2ÞPS
i ¼ 1ðXi1ðXi1 � 1Þ=½n1ðn1 � 1Þ�Þ þ

PS
i ¼ 1ðXi2ðXi2 � 1Þ=½n2ðn2 � 1Þ�Þ

½33�
It is statistically infeasible to derive analytic or asymptotic

variance formulas for these two estimators and the other

similarity estimators in this section. A bootstrap method,

suggested in Chao et al. (2008), is a simple and direct data-

resampling method to obtain approximate estimates of vari-

ances and confidence intervals especially for complex esti-

mators (Efron and Tibshirani, 1993). This method has found

wide applications in various disciplines.

To the extent that ecological processes are often most

strongly influenced by abundant species, the Morisita–Horn

measure is useful when looking for functional differences

between ecosystems. However, when rare species are import-

ant, as in many conservation applications, the Horn overlap

measure would be more useful. But the MLE of the Horn

overlap measure exhibits moderate bias due to under-

sampling. Until now, only the two-sample jackknife technique

has been used to remove part of bias (Jost et al., 2011). More

research is required to find a reliable bias-reduced estimator.

For assessing similarity among more than two assemblages,

a general multiple-assemblage, abundance-based overlap

measure CqN (Chao et al., 2008) is

CqN ¼
½1=ðNq �NÞ�

PS
i ¼ 1 ðpi1 þ pi2 þ?þ piNÞq � ðpq

i1 þ p
q
i2 þ?þ p

q
iNÞ

� 

ð1=NÞ

PS
i ¼ 1ðp

q
i1 þ p

q
i2 þ?þ p

q
iNÞ

½34�

As with the Hill numbers, here q is a parameter that deter-

mines the measure’s sensitivity to species’ relative abundances,

and N is the number of assemblages. The CqN measure in-

cludes, as special cases, the classic two-assemblage Sørensen

index (q¼0, N¼2), the Horn overlap index (q¼1, N¼2), the

Morisita–Horn similarity index (q¼2, N¼2), and their

multiple-assemblage generalizations (N42) as follows:

For q¼0, C0N is the multiple-assemblage Sørensen simi-

larity index:

C0N ¼ ðN � S=SÞ=ðN � 1Þ ½35a�

For q¼1, C1N is the multiple-assemblage Horn overlap index:

C1N ¼
1

logN

XS

i ¼ 1

XN
j ¼ 1

pij

N
log 1þ

P
ka jpik

pij

� �� �
½35b�

For q¼2, C2N is the multiple-assemblage Morisita–Horn

similarity index:

C2N ¼
2
PS

i ¼ 1

P
jokpijpik

ðN � 1Þ
PS

i ¼ 1

PN
j ¼ 1 p2

ij

½35c�

Jost (2007) was the first to develop a rigorous mathemat-

ical formulation of alpha and beta diversities based on Hill

numbers of order q. He derived the multiplicative beta diver-

sity qDb, which quantifies the effective number of completely

distinct assemblages; see also Jost et al. (2011), Chao and Jost

(in press), and Tuomisto (this volume) for reviews. For
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equally weighted assemblages, beta diversity qDb ranges be-

tween a minimum of 1 (when all assemblages are identical)

and a maximum of N, the number of assemblages in each

region (when all assemblages are completely distinct; i.e.,

there are no shared species). For example, a set of completely

distinct sites in a region of three sites attains the maximum

value of 3, whereas another set of completely distinct sites in a

region of 10 sites attains the maximum value of 10. Because

the maximum depends on the number of assemblages in the

region, beta diversities usually cannot be compared directly

among multiple regions. Instead, beta diversity should be

compared with sample-based rarefaction to a common num-

ber of samples or to a common degree of completeness of

samples in each region. However, beta diversity can be trans-

formed to the CqN measure in the range [0, 1] by the following

nonlinear transform for N equally weighted assemblages:

CqN ¼ ½ð1=qDbÞ
q�1 � ð1=NÞq�1�=½1� ð1=NÞq�1� ½36�

The transformed measure CqN is unity (when all assemblages

are identical) and 0 (when all assemblages are completely

distinct).

This nonlinear transformation ensures that CqN preserves

an essential property of an overlap index: The transformed

index CqN gives the true overlap A/S for all orders of q if N

assemblages each have S equally common species, exactly A

species are shared by all of them, and the remaining species
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Figure 9 The two-assemblage similarity profile CqN for q¼0, 1, 2.
Case I: In each of Assemblages 1 and 2, there are 20 equally
abundant species, and eight species are shared. Thus, for all orders
of q, the similarity measure CqN equals the percentage of overlap in
each assemblage. That is, CqN¼8/20¼40% for all q (black solid
line).
Case II: In each of Assemblages 1 and 2, there are 20 species, and
the relative abundances in each assemblage are pipK/i for i¼1, 2,
y, 20, where K is a normalizing constant such that the total relative
abundances is 1. Assume that the shared species are the most
abundant eight species. The similarity measure CqN increases as
order q is increased (red dashed line).
Case III: Same as in Case II, but the shared species are the rarest
eight species. The similarity measure CqN decreases as order q is
increased (blue dotted line).
are not shared by any assemblages. No linear transformation

of beta diversity can achieve this property. See Figure 9, Case I,

for an example. The measure CqN thus quantifies the effective

average overlap per assemblage, i.e., average percentage of over-

lapped species (species that are shared by all assemblages, as

defined in the above sense) in an assemblage. Because this

measure is in a sense of ‘‘average’’ overlap, it can be compared

across regions with different number of assemblages. See Chao

et al. (2008) for more details on the interpretation of CqN

based on a simple reference set of assemblages.

Just as diversity profiles are used to characterize traditional

diversity (Figure 6) and PD (Figure 8), Chao et al. (2008)

suggest the use of a similarity profile {CqN; q¼0, 1, 2,y,N} to

describe similarity across N assemblages. It is recommended

that investigators calculate at least C0N, C1N, and C2N; see Jost

et al. (2011, p. 81) and Figure 9 for examples.

Because the overlap measure CqN is constructed from Hill

numbers of order q, the magnitude of the undersampling bias

depends on the order q. As with Hill numbers, there exists a

nearly unbiased estimator only for q¼2:

Ĉ2N ¼
2
PS

i ¼ 1

P
jokðXij=njÞðXik=nkÞ

ðN � 1Þ
PS

i ¼ 1

PN
j ¼ 1½XijðXij � 1Þ=njðnj � 1Þ�

½37�

This measure quantifies the similarity of relative frequencies for

abundant species. A bootstrap variance estimator and the as-

sociated confidence interval are provided in Chao et al. (2008).

Satisfactory estimators for C0N and C1N that characterize the

similarity of relative frequencies for rare species are still lacking.
Similarity Indices Based on Total Abundance of Shared
Species

As explained earlier, the Horn overlap measure (eqn [30]) and

the Morisita–Horn similarity measure (eqn [31]) match species

relative abundances, species-by-species. Hence, the typical simi-

larity indices assess a normalized probability that two ran-

domly chosen individuals, one from each assemblage, belong

to the same species. Another approach by Chao et al. (2005) is

to consider a (normalized) probability that both individuals,

one from each of the two assemblages, both belong to any

shared species (and not necessarily to the same shared species).

Let U denote the total relative abundances associated with

the shared species in Assemblage 1 and let V denote the total

relative abundances of the shared species in Assemblage 2. The

Jaccard abundance-based similarity index is UV/(UþV�UV)

and the Sørensen abundance-based similarity index is 2UV/

(UþV). These two shared-abundance indices are called the

Chao–Jaccard abundance and Chao–Sørensen abundance in-

dices in the literature and in the software package EstimateS

(Colwell, 2011) and SPADE (Chao and Shen, 2010). This

is because, when all species are equally common, U¼S12/S1

and V¼S12/S2 and the Chao–Jaccard abundance and

Chao–Sørensen abundance indices reduce, respectively, to the

classic incidence-based Jaccard and Sørensen indices. These

two measures yield a maximum value of 1 when all species are

shared (i.e., no unique species in both assemblages;

U¼V¼1). Also, all indices tend to a minimum value of 0 for

completely distinct assemblages (i.e., no shared species in

both assemblages).
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One advantage of these measures is that the undersampling

bias due to unseen, shared species can be evaluated and cor-

rected. Chao et al. (2005) used the frequencies of observed rare,

shared species to obtain an appropriate adjustment term for U

and V to account for the effect of unseen shared species and

thus remove most undersampling bias. Then the bias-corrected

U and V estimators are substituted into the formulas to obtain

Chao–Jaccard and Chao–Sørensen estimators. These measures

are designed to be sensitive to rare shared species while still

taking abundance into account, so they may increase sharply as

more shared species are discovered. Because these measures

match the total relative abundances of species shared between

two assemblages, they are useful if the focus is to construct

abundance-based complementarity (dissimilarity or distance)

measures by subtracting each measure from one. This class of

measures can also be extended to replicated incidence data;

see Chao et al. (2005) for details.
Phylogenetic Similarity Indices

The classic Jaccard, Sørensen, and Morisita-Horn similarity

measures all have their own phylogenetic generalizations. Most

of the pioneering work was developed by microbial ecologists

(Lozupone and Knight, 2005; Faith et al., 2009). The phylo-

genetic Jaccard and Sørensen measures are based on Faith’s

total branch lengths and have formulas similar to their classic

versions. The phylogenetic Sørensen index can be expressed as

2L12/(L1þ L2), where L1 and L2 denote the total branch lengths

in Assemblages 1 and 2, respectively, and L12 denotes the total

length of the shared branches in the same time interval of

interest (Lozupone and Knight, 2005). The phylogenetic Jac-

card index takes the form of L12/(L1þ L2� L12). When species

relatedness is based on a simple Linnean taxonomic classifi-

cation tree, L1 and L2 become the number of taxa in Trees 1 and

2, respectively, and L12 becomes the number of shared taxa in

the pooled classification tree (Bacaro et al., 2007). In these

generalizations, ‘‘species’’ in the traditional indices are replaced

by the total branch lengths (or the total number of nodes) in

each assemblage. Also, ‘‘shared species’’ in the traditional in-

dices are replaced by the total shared branch length (or the total

number of shared nodes). In nearly all applications of these

phylogenetic similarity indices, it is assumed that all species are

observed; undersampling bias due to undetected species for

these measures has not been discussed in this literature.

The classic Morisita–Horn measure has recently been

generalized to its phylogenetic version (de Bello et al., 2010).

Let B denote the set consisting of all branches in the pooled

assemblages in a specific time period of interest, and let the

corresponding branch lengths in this set be {Li; iAB}. Assume

that, in the jth assemblage, aij denotes the total relative

abundance descended from Branch i, iAB, j¼1, 2, y, N. The

phylogenetic Morisita–Horn similarity for N assemblages is a

generalization of eqn [35c] based on a normalized Rao’s

quadratic entropy:

S�MH ¼
2
P

iAB

P
jokLiaijaik

ðN � 1Þ½
P

iAB

PN
j ¼ 1 Lia2

ij�
½38�

A nearly unbiased estimator for this measure is similar to that

in eqn [37]. However, the measure in eqn [38] is valid only for
ultrametric trees. Extension to nonultrametric trees requires

further research.
Appendix

List of Courses

1. Community Ecology

2. Conservation Biology

3. Statistical Ecology
See also: Biodiversity, Definition of. Defining, Measuring, and
Partitioning Species Diversity. Diversity, Molecular Level. Diversity,
Taxonomic versus Functional. Functional Diversity Measures.
Latitudinal Gradients of Biodiversity. Measurement and Analysis of
Biodiversity. Nucleic Acid Biodiversity: Rewriting DNA and RNA in
Diverse Organisms. Species Diversity, Overview
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