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E C O L O G Y

Synthesis reveals approximately balanced biotic 
differentiation and homogenization
Shane A. Blowes1,2*, Brian McGill3, Viviana Brambilla4,5, Cher F. Y. Chow4, Thore Engel1,2,6,7,  
Ada Fontrodona-Eslava4, Inês S. Martins4,8, Daniel McGlinn9, Faye Moyes4, Alban Sagouis1,2, 
Hideyasu Shimadzu10,11, Roel van Klink1,2, Wu-Bing Xu1,2, Nicholas J. Gotelli12, Anne Magurran4, 
Maria Dornelas4,5,8, Jonathan M. Chase1,2

It is commonly thought that the biodiversity crisis includes widespread declines in the spatial variation of species 
composition, called biotic homogenization. Using a typology relating homogenization and differentiation to 
local and regional diversity changes, we synthesize patterns across 461 metacommunities surveyed for 10 to 
91 years, and 64 species checklists (13 to 500+ years). Across all datasets, we found that no change was the most 
common outcome, but with many instances of homogenization and differentiation. A weak homogenizing trend 
of a 0.3% increase in species shared among communities/year on average was driven by increased numbers of 
widespread (high occupancy) species and strongly associated with checklist data that have longer durations and 
large spatial scales. At smaller spatial and temporal scales, we show that homogenization and differentiation can 
be driven by changes in the number and spatial distributions of both rare and common species. The multiscale 
perspective introduced here can help identify scale-dependent drivers underpinning biotic differentiation and 
homogenization.

INTRODUCTION
With an ever-growing human footprint (1), Earth’s biodiversity is 
inevitably changing (2). There is substantial evidence that humans 
are accelerating the global extinction rate (3). However, at local 
scales, widespread changes in species composition are accompanied 
by little evidence for a strong overall directional trend in species 
richness amidst substantial variability (4–7) [albeit with some con-
troversy; (8)]. One common explanation for the perceived discrep-
ancy between declining global diversity and little to no change in 
the number of species found at local scales is biotic homogeniza-
tion (9–11).

Biotic homogenization occurs when spatially distinct locations 
become more similar to one another in species composition through 
time (12–14). Two opposing forces can lead to homogenization. 
First, there can be increases in the numbers of widespread (high oc-
cupancy) species, such as native species that benefit from changing 
landscapes, or non-native species expanding their range. This can 
lead to biotic homogenization among local communities even with 
increasing diversity at smaller and larger scales. Second, there can be 
extirpation of rare (low occupancy) species from regions. Such extir-
pations are often accelerated when changing landscapes disfavor rare 
species’ habitats or population growth. However, landscapes can also 

become more heterogeneous (15), which can lead to biotic differen-
tiation. Here, different species are favored in different habitat types, 
leading to lower similarity among local communities through time. 
Differentiation can occur when non-native species are introduced 
locally, but do not become widespread, or when formerly widespread 
species are locally extirpated (16, 17). While both biotic homogeni-
zation and differentiation are expected theoretically under different 
scenarios, and frequently observed, a synthesis of just how frequent-
ly and intensely they occur in surveys of biodiversity change through 
time is lacking. Moreover, despite the intrinsic connection between 
changes in diversity across scales and the homogenization and dif-
ferentiation of community composition through time (16, 17), the 
empirical relationships among these have not been well quantified 
and synthesized.

Whittaker’s (18) diversity partition presents a parsimonious frame-
work to examine the relationship between rates of change across spa-
tial scales and the homogenization or differentiation of community 
composition. The diversity of a single site (e.g., a local site) is α diver-
sity, and the combined diversity of several local sites (e.g., a region) is 
γ diversity. Variation in species composition among local sites, re-
ferred to as β diversity, is given by: β = γ∕α (where α is the average 
local diversity across sites in a region). Therefore, if rates of change in 
α and γ diversity through time are not equal, then β diversity is chang-
ing too. Moreover, these changes in β diversity can be mathematically 
linked to changes in the number of sites species occupy (i.e., occu-
pancy). Average occupancy ( o ), or the proportion of sites within a re-
gion occupied by species i (oi), is related to Whittaker’s formula by 
β = γ∕α = γ∕ (Σoi) = γ∕ (γo) = 1∕o (19). Regardless of whether β 
diversity decreases (homogenization) or increases through time (dif-
ferentiation), with this framework we can make direct links to changes 
in diversity at two different scales, and to changes in the average pro-
portion of sites that species occupy (Fig. 1).

We can gain a more ecologically informed understanding of scale-
dependent biodiversity change by evaluating change in α, β, and γ 
diversity simultaneously. We illustrate this more detailed picture of 
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scale-dependent change in Fig. 1, showing six qualitatively distinct 
scenarios that emerge in the intersecting space of temporal changes 
in α and γ diversity. The 1:1 line (i.e., ∆γ = ∆α, ∆β = 0) represents 
equal changes at both scales and delineates the boundary between 
homogenization and differentiation (Fig. 1). When ∆α > ∆γ and a 
region is below the 1:1 line, homogenization occurs because species 
have an increased average occupancy. Here, three of the six scenarios 
are possible. (i) Increased numbers of high occupancy species, for 
example, due to environmental changes that favor widespread, gen-
eralist and/or non-native species, could drive increases in α diversity 
proportionately more than γ diversity, leading to homogenization 
(with ∆α > ∆γ > 0; Fig. 1i). (ii) If widespread species replace low oc-
cupancy species, then average occupancy increases and homogeniza-
tion is associated with diversity gains at the α scale and losses at the γ 
scale (∆α > 0, ∆γ < 0; Fig. 1ii). (iii) If low occupancy species (e.g., 
endemic species restricted to few sites) are regionally extirpated, then 
homogenization is associated with diversity loss at both the α and γ 
scales (∆γ < ∆α < 0; Fig. 1iii). These distinct scenarios all describe 
cases of biotic homogenization where β diversity declines through 
time, but variation in the nature of scale-dependent change at the α 
diversity and γ diversity scales could have different implications for 
understanding biodiversity change, as well as how to mitigate it via 
conservation policy. Three further parallel and distinct scenarios of 
differentiation (and decreasing average occupancy), leading to in-
creasing β diversity through time, are also possible. (iv) Fewer wide-
spread or high occupancy species could, for example, result from 
increased habitat heterogeneity, and greater losses at α relative to γ 
scales combine to increase β diversity (∆α < ∆γ < 0; Fig. 1iv). In-
creased habitat heterogeneity could also lead to increases in γ diver-
sity, accompanied by either (v) α diversity declines if low occupancy 
species replace high occupancy species (∆α < ∆γ, ∆α < 0, ∆γ > 0; 
Fig. 1v) or (vi) increased α diversity due to increased numbers of low 
occupancy species (∆γ > ∆α > 0; Fig. 1vi; see fig. S1 for further il-
lustration of scale-dependent variation).

To assess overarching trends in scale-dependent biodiversity change 
from observational time series, we use a compilation of 525 datasets 
(fig. S2) documenting taxonomic diversity through time across spatial 
scales and the typology of Fig. 1 to estimate changes in α, β, and γ di-
versity. Among these datasets, there were 461 studies where we could 
calculate sample effort-controlled species richness from local sites (α 
diversity) and from the broader region (γ diversity). To this, we added 
64 datasets compiled from presence-absence species “checklists”; these 
data typically encompass much longer time spans, documenting his-
torical species composition before major human disruption and a 
more contemporary time period, but most frequently only have two 
time points. We include species checklist data despite their coarse na-
ture as they are typically relatively complete species inventories and 
have been used to make key contributions to our understanding of 
long-term trends in introductions and extinctions (20, 21), as well as 
biotic homogenization (22, 23). For all datasets, we used a minimum of 
at least four sites per region and at least 10 years between the first and 
last samples. At the α scale, spatial grains varied from <1 m2 (e.g., plant 
quadrats or pitfall traps) to checklists of grid cells or whole countries or 
islands. At the γ scale, spatial extents ranged from several samples with-
in a field site (<<1 km2) to species checklists on islands distributed 
across several oceans.

We examine scale-dependent biodiversity change with two com-
plementary analyses. First, to examine whether there were any gen-
eral tendencies among all 525 datasets (many of which only had two 
time points), we calculated temporal changes in diversity at the 
smaller, α scale, and a larger, γ scale, taken as the sum of species in 
all of the local samples combined. Rates of change were calculated at 
each scale as a log ratio using samples at the start and end of each 
time series standardized by the duration between samples {i.e., 
log[(St2/St1)/(t2 − t1 + 1)], where S is species richness, and t1 and t2 
denote the year of first and last sample, respectively}. We fit multi-
level models separately to data at the α and γ scales; both models 
adjusted for residual heterogeneity associated with duration and the 
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Fig. 1. Mechanisms that underpin changes in spatial variation of species composition can be understood by examining the relationship between changes in 
regional- and local-scale species richness through time. When richness changes at regional (∆γ) and local (∆α) scales are calculated as proportional changes (i.e., on a 
log scale), assemblages below the dashed 1:1 line, i.e., ∆γ < ∆α, are being homogenized, β diversity is decreasing, and average occupancy is increasing. Conversely, as-
semblages above the diagonal dashed 1:1 line, i.e., ∆γ > ∆α, are differentiating, β diversity is increasing, and average occupancy is decreasing. Homogenization can be 
further characterized as being due to the following: (i) increased numbers of species with high occupancy (i.e., that occupy the majority of sites in the region); (ii) species 
with low occupancy (i.e., occupy few sites in the region) being replaced by those with high occupancy; (iii) the number of species with low occupancy is decreasing. 
Similarly, differentiation can be due to the following: (iv) The number of species with high occupancy is decreasing; (v) species with low occupancy are replacing those 
with high occupancy; (vi) the number of species with low occupancy is increasing.

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 18, 2024



Blowes et al., Sci. Adv. 10, eadj9395 (2024)     21 February 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

3 of 10

different data sources (i.e., resurveys and checklists; see Material 
and Methods). We then used a subset of the datasets where multiple 
time points were available and relative abundances were sampled 
(n = 229, median duration = 16 years, range = 10 to 72 years; see 
Material and Methods) to determine the influence of (i) calculating 
rates of change using only two time points and (ii) rare species on 
our results. Specifically, we estimated rates of change in species rich-
ness and a diversity metric less sensitive to rare species [the effective 
numbers of species conversion of Simpson’s concentration; (24)] 
using linear models fit to time series.

RESULTS AND DISCUSSION
We observed all possible outcomes across the different datasets 
(Fig. 2A). Many combinations of α and γ scale changes resulted in 
datasets having no trend in β diversity, many with trends toward ho-
mogenization (lower β diversity through time), and many with trends 
toward differentiation (higher β diversity through time). In total, 
though, few individual datasets had values of ∆β that statistically dif-
fered from zero (fig. S3). Our analysis of all studies combined found 
a weak mean trend toward homogenization (∆β = −0.003, 90% cred-
ible interval (CI): −0.005 to −0.001; Fig.  2B). This change equates 
approximately to three out of 1000 entirely distinct (i.e., no shared 
species) communities (25) being removed per year (rate of change 
calculated as the difference between ∆γ and ∆α). Stated differently, 
this represents an average increase of 0.3% per year in the number of 
shared species among localities within a region. This mean result was 
driven by approximately one-half of the datasets that had only two 
time points, including the checklist data (n = 64) and resurvey data 
(n = 232), where contemporary samples were collected to document 
changes compared to a historical sample (fig. S4). When these data 
having only two time points were removed from the analysis, we 

found a slight tendency to differentiation (median ∆β = 0.002, 90% 
CI: −0.002 to 0.005; fig. S4D). Furthermore, homogenization in the 
data with only two time points was strongly associated with checklist 
data (Fig. 2A), and our model showed that residual variation was a 
decreasing function of sampling duration (fig. S5). This suggests that 
our observation of a slight tendency toward homogenization in the 
overall dataset was driven by relatively weak trends at intermediate to 
large spatial and temporal scales (fig.  S6). On the other hand, at 
smaller to intermediate spatial scales, no change, differentiation, and 
homogenization are all more common, possibly because at these 
scales, it is equally plausible that environmental heterogeneity in-
creases, decreases, or does not change at all through time (9, 17).

Although homogenization is often equated with small changes in 
α diversity, but large declines in γ diversity via larger-scale extinctions 
(9–11), we found the opposite result. Our observed weak trend to-
ward homogenization is associated with gains in α diversity more of-
ten than losses in γ diversity (Fig. 2A and fig. S3). When α diversity 
increases more than γ diversity, β diversity goes down. Thus, the weak 
overall trend to homogenization (∆β < 0) is associated with a small 
net average increase in α diversity (∆α  =  0.004; 90% CI: 0.002 to 
0.005), but smaller positive changes in γ scale diversity (∆γ = 0.0006, 
90% CI: 0.0003 to 0.0008). Across all datasets, increased numbers of 
widespread, high occupancy species (Fig. 1i) are a key driver of biotic 
homogenization (Fig. 2A).

When we estimated rates of change using models fit to time series 
data, we again found considerable heterogeneity in scale-dependent 
diversity changes among regions. Increased power to detect changes, 
particularly at the γ scale, identified more cases where α and γ scale 
changes were approximately equal, and multiple cases where ∆γ > ∆α 
(Fig. 3, A and B). This results in overall average α and γ scale changes 
being more closely balanced, with ∆γ > ∆α on average (Fig.  3C), 
meaning average ∆β is slightly increasing (differentiating) but broadly 

−0.01

0

0.01

−0.01 0 0.01

−0.10

−0.05

0.00

0.05

0.10

−0.05 0.00 0.05
  [log(St2/St1) . year

1]

  [
lo
g(
S
t2
/S

t1
)  
ye
ar

1 ]

Sample type

Checklist

Resurvey

A

−0.006 −0.003 0
 diversity year 1

B

Fig. 2. Patterns of homogenization and differentiation across 461 metacommunities and 64 checklists. (A) Empirical estimates of γ scale changes (∆γ) as a function 
of α scale changes (∆α), both axes show log ratios standardized by the number of years between the estimates; black lines show average γ and α scale rates of change, 
and shading (not visible for γ scale) shows the 90% credible interval from multi-level models fit separately to these data points at each scale. Dashed gray lines show x = 0, 
y = 0, and x = y. (B) Kernel density plot of change in β diversity per year calculated as the difference between ∆γ and ∆α (left = homogenization, right = differentiation) 
of 1000 draws of the posterior distributions of overall mean rates of change at the α and γ scales; the black point shows the median, bar represents 50 (thick) and 90% 
(thin) credible intervals. Six regions with ∆α > 0.1 (range: 0.1 to 0.3) were removed for clarity from (A); point color represents categories of change from Fig. 1, and points 
falling on boundaries between categories are gray.
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overlapping zero (Fig. 3D; (richness) median = 0.002, 90% CI: −0.001 – 
0.005). These results describe changes occurring at smaller to inter-
mediate spatial and temporal scales in comparison to the analysis that 
included the checklist data in the two time point analyses above and 
suggest that homogenization and differentiation are approximately 
balanced at these smaller scales. We also found qualitatively similar 
results when we used the effective number of species conversion of 
Simpson’s concentration (which we refer to as ENS; Fig. 3B) (25). Be-
cause species richness is more strongly influenced by rare species, 

while ENS more heavily weights common species (24, 25), we can use 
any difference in the results to evaluate the role of rare (versus rare and 
common) species in driving our overall observed patterns. Here, over-
all results using measures that weight rare species more or less heavily 
are qualitatively consistent (Fig. 3, C and D), indicating that changes in 
the numbers and spatial distributions of rare species alone are not the 
sole driver of observed biodiversity change. Instead, variation in rates 
of ENS change shows that altered numbers of relatively abundant spe-
cies, either at the α scale of local sites or the larger γ scale, can also 
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Fig. 3. Scale-dependent diversity changes across a subset of 229 metacommunities estimated using models fit to a time series of data. Regional variation in α, β, 
and γ diversity change estimated using (A) species richness (S), (B) the effective number of species (ENS) conversion of Simpson’s concentration (25), (C) overall average 
rates of α and γ scale diversity change, and (D) overall estimates of ∆β diversity. Datasets (regions) in (A) and (B) are arranged in order of the magnitude of α diversity 
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drive changes in spatial β diversity (Fig. 3B). Moreover, although tem-
poral changes in richness and diversity are often correlated (26), we 
found the strength of the relationship is considerably weaker at the γ 
scale compared to the α scale (fig. S7, A and B). This means that a re-
gion can be strongly homogenizing or differentiating due to altered 
numbers and spatial distributions of rare species (reflected in changes 
in species richness, |∆βS| > 0), but not experiencing strong changes in 
the number and spatial distribution of relatively common species (re-
flected in ENS, ∆βENS ~ 0) and vice versa (fig. S7C). This suggests that 
examining the relationship between changes in the different compo-
nents of diversity (26) across scales will often be required to fully un-
derstand drivers of β diversity change.

Although we find some overall tendencies across all of our com-
piled data (i.e., local gains in species richness slightly outpace regional 
gains, leading to homogenization, especially for long duration check-
list studies), our results primarily indicate that changes in α, β, and γ 
diversity through time are highly variable across locations, taxa, and 
time. This matches general findings on local diversity (4–6, 27) and 
population trends (28, 29), where variation in the direction of change 
means that the strength of overall net trends is weak and is often sta-
tistically indistinguishable from zero. We argue that perhaps these 
results should be expected. There are, of course, many—often anthro-
pogenic—factors that have accelerated in recent decades that could 
lead to biotic homogenization, including transporting species beyond 
their historical biogeographic boundaries, and recreating urban or 
high intensity agricultural landscapes repeatedly (12–14). However, at 
the same time, many other impacts could lead to differentiation, in-
cluding substantial fragmentation of the landscape, the creation of 
strong spatial gradients of human impact intensity, applying spatially 
varying resource management practices and land use regulations, and 
climate change, which induces species to shift at different rates, all 
leading to spatial heterogeneity (15, 16, 30). In this context, we stress 
that the lack of strong overall scale-dependent biodiversity change 
and prevalence of homogenization should not be taken to indicate 
that humans are not having a large impact on biodiversity. Both de-
creases in β diversity, as in homogenization, or increases, as in differ-
entiation, are likely to result from humans modifying nature.

Well-known biases, such as greater sampling effort in the global 
north when compared to the tropics and Southern Hemisphere, persist 
in the biodiversity data compiled for this study (fig. S2). This largely 
limits the generality of our findings to well-studied regions of the planet. 
In addition, our focus on relating scale-explicit, temporal changes of 
diversity to altered spatial patterns of species composition (i.e., the 
number of distinct assemblages within a region) does not track species 
identities. The extirpation of a species shared among sites in a region 
matched by a gain of a different shared species has no net effect on the 
number of distinct assemblages in a region but clearly involves changes 
that are a key component of biodiversity change (4, 5). Moreover, to 
parsimoniously link scale-dependent diversity changes to changes in 
spatial patterns of species composition, we used Whittaker’s (18) multi-
plicative diversity partition [i.e., only two discrete spatial scales (α and 
γ)] and very simple statistical models. Extensions to examine changes in 
diversity scaling along a continuum of spatial scales, and to account for 
sources of nonindependence, such as autocorrelation, and correlated 
changes in numbers of individuals, species’ relative abundances, and 
species richness (26) are important next steps. Last, extending the 
framework introduced here to scale-explicit causal attribution of diver-
sity changes promises to strengthen links between biodiversity science 
and conservation policy (31).

Effective conservation is increasingly thought to require protec-
tion across multiple sites or at landscape (or larger) spatial scales (32, 
33). The simple conceptual typology introduced here simultaneously 
considers change in α, β, and γ diversity through time, showing how 
contemporary biodiversity monitoring for management and conser-
vation can embrace a multiscale approach. Here, our results show 
that different metacommunities are experiencing fundamentally dif-
ferent types of temporal change across scales, resulting in variable 
trends, and often no trend, in spatial β diversity through time. For 
metacommunities undergoing change, gains or losses in the number 
of regionally widespread and/or abundant species can underlie either 
biotic homogenization or differentiation. This suggests moving be-
yond a belief of ubiquitous biodiversity loss and homogenization and, 
instead, working to understand the multiscale nature of biodiversity 
change and embracing its variability.

MATERIALS AND METHODS
Data compilation
Our conceptual typology requires estimates of species richness chang-
es at smaller, local, spatial scales (α diversity) nested within larger, re-
gional, spatial scales (γ diversity). Both scales are somewhat arbitrary 
and the exact definition varies among data sources. To make our data 
search and synthesis as comprehensive as possible, we searched broad-
ly for data that met these criteria, where regions had at least four plots 
or locations, and where richness changes were estimated over a period 
of at least 10 years. We started by identifying 115 relevant datasets 
within the BioTIME database (34). To this, we added the following: (i) 
similar assemblage-level time series of studies available in other biodi-
versity time series compilations not (yet) included in BioTIME [see, 
e.g., (35, 36)]; (ii) data from studies using “resurveys,” where sites as-
sociated with a historical dataset were revisited and re-surveyed using 
similar methodology in more recent times; (iii) data from “checklist” 
studies where species known to be present in a given locality (and re-
gion) at a “historical” point in time were indicated together with spe-
cies present in that locality at a later point in time (minus those that 
went extinct from a site plus those that newly colonized that site); and 
(iv) data from studies that reported changes in species richness at two 
spatial scales, but for which the underlying raw data were not available. 
Because of the relatively specific data requirements and our aim toward 
a comprehensive growing database, we conducted literature searches 
and acquired data in an ad hoc fashion by searching multiple relevant 
databases, rather than using a formal literature search. In all, we com-
piled a total of 525 regions and a total of 38,166 locations that met our 
criteria; 461 regions documented repeated samples of species assem-
blages through time, and 64 regions were compiled from checklist 
studies (fig. S2 and data file S1).

Data standardization
To quantify changes in β diversity that emerged from combined chang-
es occurring at the local and regional scale, we required that the start 
and end years for all locations within a given region were the same. 
This ensured that change estimated across the different locations with-
in a region covered the same period of time, and meant that regional 
changes estimated by aggregating all species across all locations within 
regions also covered the same time period. In addition, to ensure that 
our analyses did not quantify changes in species richness due to varia-
tion in sampling effort, we needed to standardize sampling effort (e.g., 
the number of plots or transects) across all locations for each time 
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point within regions. The heterogeneous nature of the data that we 
compiled meant that we needed slightly different procedures to iden-
tify combinations of locations and years for different data sources. For 
clarity, we delineate broad categories of data structures and describe 
separately how locations and years were selected and sample-effort 
standardization needed for the different structures.

Checklist data
Checklist data typically consisted of species lists for locations within 
regions, compiled from a historical time period and from a more 
contemporary time period (mean = 251 years; median = 208 years; 
range = 10 to 518 years). These lists were compiled either from sam-
ples and/or observations collected during the two periods or, more 
frequently, by counting native species only to determine the rich-
ness of the historical period, with the contemporary species richness 
calculated as the sum of native and introduced species (minus any 
species that went extinct). For our analyses, we selected regions that 
had at least four locations, removed locations that documented spe-
cies lists for only one period, and lastly, ensured that all locations 
within each region had data from the same time period for both the 
historical and contemporary species lists. Because we were interest-
ed in calculating a rate of change, we needed a single date for both 
the historical and contemporary samples, which in some cases (e.g., 
oceanic islands) reduces a period of first contact with non-native 
species to a single time point. Where possible, we used dates from 
the original data sources. However, where these were not available, 
approximate dates were estimated for each data source, typically 
based on when introduced species were likely to have first started 
arriving, such as first European contact, or post-contact with North 
America for the flora and fauna of Europe.

Resurvey data
We distinguish three different data structures that we refer collec-
tively to as resurvey data:

(i) Compiled time series data that document repeated samples of 
assemblages documenting species abundances, including data from 
the BioTIME (34), RivFishTime (35), and InsectChange (36), plus 
similarly structured data from 339 studies that we compiled for this 
and related studies. We first filtered data to ensure that samples 
from all locations within regions had a temporal duration of at least 
10 years and that a minimum of four locations within a region were 
sampled per year (allowing us to track the diversity of the same loca-
tions through time within regions). Locations within regions were 
identified using geographic coordinates in the data, although we also 
included regions with only one geographic coordinate where discrete, 
unique samples could be identified (e.g., multiple plots within a site).

After applying these filters, the number of locations sampled per 
year often varied considerably within regions, and we sought to 
identify locations, as well as start and end years that balanced a 
trade-off between the number of locations and the duration of the 
sampling period for each region. To do this, we first identified all 
year pairs—combinations of start and end year with at least 10 years 
separating them—for all locations within a given region. We then 
determined different thresholds for what proportion of the total 
number of locations we wanted to retain, using a combination of the 
total number of locations in a region, and visual inspection of loca-
tions sampled in each year. For example, for resurvey data newly 
collated for this study, we selected starting and end years where the 
proportion of the maximum locations was at least 90% for regions 

with fewer than 20 locations, 50% for regions with more than 20 
locations, and 25% for the NERC Countryside Survey data, which 
had between 60 and 300 locations across the United Kingdom (and 
where the lower threshold meant that the temporal duration of 
the surveys increased by more than 10 years). For regions in the 
BioTIME and RivFishTime databases, we identified year pairs with at 
least 75 and 90% of the maximum number of locations, respectively. 
Multiple year pairs often remained following this, and we selected 
the pair of years with the longest duration, and lastly, broke any re-
maining ties by selecting the pair of years with the most locations. 
For mosquito data sourced from Vectorbase (https://vectorbase.org/
vectorbase/app) and compiled in InsectChange, there were fre-
quently fewer sites sampled monthly, and we visually selected loca-
tions and the start and end years for each region to ensure that we 
would be able to standardize the sampling of the same months for 
each location through time.

Next, we ensured that sampling effort was consistent across all 
years and locations within regions, using sample-based rarefaction 
(37) where required to standardize effort. Note that for many data 
(e.g., data from InsectChange and other invertebrate data) where 
sampling took place across multiple months within years, we used 
sample-based rarefaction to resample equal numbers of samples 
across the same months for all locations within a region, which 
were then compiled to provide one sample per year for each loca-
tion. In addition, for data collected using multiple sampling meth-
odologies (e.g., mosquitoes sampled using different attractants or 
freshwater fishes collected with different techniques), we identified 
the methodology that ensured the maximum number of time series 
and standardized sampling effort using data collected with only 
one method.

(ii) We collated data from studies where sites associated with a 
historical dataset were revisited and resurveyed using the same meth-
odology in more recent times, sometimes referred to as “legacy” 
studies [see, e.g., (38)]. Again, we required each region to have at least 
four locations and 10 years or more between the historical and con-
temporary samples.

(iii) Last, we collated studies that estimated species richness chang-
es at two scales, where there were at least four sites at the smaller scale 
and 10 years between the first and last sample. For these studies, raw 
data were not available (n = 15), but available data provided an esti-
mate of the average local richness at two time points and a single value 
for regional richness at two time points.

Estimating richness, diversity, and its change
For the majority of the data, we calculated species richness from the 
effort-standardized locations and years as the number of distinct 
species, though higher classifications, such as genera, were some-
times used where studies only classified organisms to genus. We cal-
culated species richness for each location within each region for 
every available year to document changes in α scale species richness. 
γ Scale richness was calculated as the number of species in all sites 
combined for each region and each year. This method of calculating 
regional richness yields a single number for each region at each time 
point, and we calculated two types of resamples for regional richness. 
For datasets where sample-based rarefaction was not required to 
standardize effort, jackknife resamples were calculated by systemati-
cally leaving each location out of the regional richness calculation 
once. For where effort standardization was more complex and re-
quired the use of sample-based rarefaction, we used 200 bootstrap 
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resamples (i.e., richness resamples were estimated using all locations, 
not nlocations − 1); then, to prevent these resampled data from domi-
nating the data to which models were fit, we subsampled the boot-
strap resamples down to the same size as a jackknife would have been 
(i.e., we used a random subset of the bootstrap resamples equal to 
nlocations – 1 for the given dataset). Last, we summarized both the 
jackknife and bootstrap resamples by calculating the median region-
al richness, to which models were fit.

Many data sources, including the 64 datasets with checklist data 
and 232 regions in the resurvey data, had only 2 years of data avail-
able (e.g., a historical and more recent sample). Therefore, to maxi-
mize the number of regions in our complete analysis, we calculated 
richness change using the log ratio of species richness in the most 
recent time point and species richness in the initial sample, divided 
by the number of years between the two samples [i.e., log

(

St2
St1

)

t−1 , 
where St2 is species richness in the most recent sample (t2 = year), 
St1 is species richness in the first sample (t1 = year), and t =  t2 − 
t1 + 1 is the number of years between the samples]. This was done 
separately for each location in each region. These same data were 
aggregated and used to calculate concomitant changes in regional 
diversity through time, quantified as the log ratio of resamples (either 
jackknife or bootstrap) of species richness at the regional scale in the 
most recent sample and the resample of species richness in the initial 
sample, divided by the number of years between the two samples.

In addition, because many of our data sources included both infor-
mation on the abundance of individual species and time series of more 
than 2 years, we also calculated diversity metrics that differ in their 
sensitivity to common and rare species (25, 39) for all years having 
effort-standardized data and estimated rates of change using statistical 
models. Specifically, we calculated richness and the effective number 
conversion of Simpson’s concentration (25). These two metrics are 
equal to diversity with order q = {0, 2}, where increasing q decreases 
the influence of rare species, and qD =

�

∑S

i=1
p
q

i

�1∕(1−q)

 ; pi is the fre-
quency (relative abundance) of species i (25). These diversity 
measures are sometimes referred to as Hill numbers, numbers 
equivalents, or effective numbers (25, 39), here we refer to them as 
species richness and ENS for simplicity. Moreover, both these 
measures of diversity can be used in the multiplicative diversity 
partition of Whittaker (25), allowing us to use the one framework 
overviewed (for the case of species richness) in Fig. 1 to estimate 
changes at the β scale (∆β) as the difference between changes at 
the γ and α scales (i.e., ∆γ − ∆α).

Statistical models
For our first analysis (i.e., rates of richness change calculated using log 
ratios standardized by time series duration), we estimate α and γ scale 
richness changes using multilevel (also called mixed effects or hierar-
chical) models to fit data from each scale separately. For our initial 
analysis of the changes calculated using log ratios (nregions  =  525), 
these models took the form

ESij is assumed to have a Gaussian error distribution and is the 
jth local-scale estimate of species richness change in region i or, at 
the regional scale, the j subscript is dropped and ESi is the median of 
the regional richness resamples for region i; a is the overall intercept 
and equal to the average rate of change estimated for each scale, and 
ai is the departure from the overall intercept for each region (i.e., the 
varying intercept for regions) assumed to have a Gaussian distribu-
tion with mean zero, and SD estimated from the data. Because vari-
ation in the log ratio estimates of change was a decreasing function 
of the duration between samples, we included covariates for residual 
variation (σ), where sample_typei estimated a separate intercept ac-
cording to whether region i were either resurvey or checklist data, 
and logdti was the natural logarithm of the number of years between 
the first and last samples in region i. We fit models using Bayesian 
methods and we assumed the following,~ weakly regularizing priors

For the time series data of species richness and the effective num-
ber of species conversion of Simpson’s concentration (nregions = 229; 
hereafter ENS), we estimated rates of change using statistical models 
(rather than change being calculated using log ratios as was done in 
the initial analysis). These time series data were constrained to be 
positive values but, due to effort standardization, were not always 
integer values, so we fit models that assumed lognormal error distri-
butions and identity link functions. The models fit to data at the α 
scale took the form

where Yij,t is either species richness or ENS of location j in region i at 
time t; a and b are the overall intercept and slope (fixed effects), 

ESij ∼ N(μ, σ)

μ = a + aregion[i]

aregion ∼ N(0, σregion)

log(σ) ∼ sample_typei ∗ logdti

α ∼ N(0, 1)

σregion ∼ N(0, 1)

sample_typei ∼ N(0, 1)

logdti ∼ N(0, 1)

Yij,t ∼ lognormal(μ, σ)

μ = a + ai + aij + (b + bi + bij)xij,t

[ai, bi]
� ∼MVNormal(0, SRS)

S =

[

σai 0

0 σbi

]

R =

[

1 ρai,bi

ρai,bi 1

]

[aij, bij]
� ∼MVNormal(0, SRS)

S =

[

σaij 0

0 σbij

]

R =

[

1 ρaij,bij

ρaij,bij 1

]
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respectively; ai and aij are the departures from the overall intercept 
for region i and location j (nested with region i), respectively; bi and 
bij are the departures from the overall slope for region i and location 
j (nested with region i), respectively; multivariate Gaussian distribu-
tions with a mean of zero were assumed for all varying parameters, 
with the covariance estimated from fitting the model to the data. x is 
time in units of years and was centered by subtracting the mean from 
all values before model fitting. We assumed weakly regularizing pri-
ors. Only the prior for the overall intercept differed between the 
models for richness and ENS, and correlations between levels of the 
grouping factors are estimated using the Cholesky decomposition of 
the correlation matrix (R), and assumed a Lewandowski-Dorota-Joe 
(LKJ) prior

The models fit to data at the γ scale took the form

where Yij,t is either species richness or ENS of location j at time t; a 
and b are the overall intercept and slope (fixed effects), respec-
tively; ai are the departures from the overall intercept for region i; 
bi are the departures from the overall slope for region i; multivari-
ate Gaussian distributions with a mean of zero were assumed for 
all varying parameters, with the covariance estimated from fitting 
the model to the data. x is (mean centered) year. We assumed 
weakly regularizing priors. Again, only the prior for the overall 
intercept differed between the models for richness and ENS, and 
correlations between levels of the grouping factors are estimated 
using the Cholesky decomposition of the correlation matrix (R), 
and assumed an LKJ prior

We fit all models using the Hamiltonian Monte Carlo (HMC) 
sampler Stan (40), and models were coded using the brms package 
(41). Models had variable numbers of chains and iterations to en-
sure posterior distributions had sufficient effective sample sizes. Vi-
sual inspection of the HMC chains and Rhat summaries showed 
model convergence (all Rhats, <1.05).

To quantify proportional changes in β diversity (∆β), we used 
the models fit to the α and γ scale data (described above), and ∆β 
was calculated as the difference between ∆γ and ∆α (which are 
also on a proportional or log scale). Specifically, we calculated the 
difference between 1000 draws from the posterior distribution of 
the γ scale estimate (∆γ) and the α scale estimate (∆α). Whittaker’s 
(18) multiplicative partition means the units of our estimate of β 
diversity are effective numbers of communities (25). Variation 
among regions in ∆β was calculated similarly: estimates of change 
for individual regions in the initial analysis of log ratios used the 
varying intercepts (i.e., a + aregion[i]) and the time series data used 
the varying slopes for each region (i.e., b + bi), from models fit to 
data at the α and γ scales. The uncertainty associated with all esti-
mates of change was calculated using draws (at least 1000) from 
posterior distributions of parameter estimates, and we describe 
results as statistically significant when the 90% CI does not over-
lap zero.

Supplementary Materials
This PDF file includes:
Figs. S1 to S7
Legend for data file S1

Other Supplementary Material for this manuscript includes the following:
Data file S1
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