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The proper analysis of data goes hand in hand with an appropriate sampling 
design and experimental layout. If there are serious errors or problems in the design of 
the study or in the collection of the data, rarely is it possible to “repair” these problems 
after the fact. In contrast, if the study is properly designed and executed, the data often 
can be analyzed in several different ways to answer different questions. In this chapter, 
we discuss the broad issues that you need to consider when designing an ecological 
study. We can’t over-emphasize the importance of thinking about these issues before 
you begin to collect data. 
 

What is the point of the study? 
This may seem facetious and self-evident, but many studies are initiated without 

a clear answer to this question. Most answers take the form of a more focused question: 
 
“Are there spatial or temporal differences in Variable Y?”  

This is the most common question that is addressed with survey data, and it 
represents the starting point of many ecological studies. Standard statistical methods 
such as analysis of variance (ANOVA) and regression are well-suited to answer this 
question. Moreover, the conventional testing and rejection of a simple null hypothesis 
(see Chapter 4) yields a dichotomous yes/no answer to this question. It is difficult even 
to discuss mechanisms without some sense of the spatial or temporal pattern in your 
data. Understanding the forces controlling biological diversity, for example, requires at a 
minimum an accurate spatial map of species richness. The design and implementation 
of a successful ecological survey requires a great deal of effort and care, just as much 
as is needed for a successful experimental study. In some cases, the survey study will 
address all of your research goals; in other cases, a survey study will be the first step in 
a research project. Once you have documented spatial and temporal patterns in your 
data, you will conduct experiments or collect additional data to address the mechanisms 
responsible for those patterns.  
 
“What is the effect of Factor X on Variable Y?” 

This is the question directly answered by a manipulative experiment. In a field or 
laboratory experiment, the investigator actively establishes different levels of Factor X 
and measures the response of Variable Y. If the experimental design and statistical 
analysis are appropriate, the resulting P-value can be used to test the null hypothesis of 
no effect of Factor X. Statistically “significant” results suggest that Factor X influences 
Variable Y, and that the “signal” of Factor X is strong enough to be detected above the 
“noise” caused by other sources of natural variation.1 Certain “natural experiments” can 
be analyzed in the same way, taking advantage of natural variation that exists in Factor 
X. However, the resulting inferences are usually weaker because there is less control 
over confounding variables. We discuss natural experiments in more detail later in this 
chapter. 
                                            
1 Although manipulative experiments allow for strong inferences, they may not reveal explicit 
mechanisms. Many ecological experiments are simple “black box” experiments that measure the 
response of the Variable Y to changes in Factor X, but do not elucidate lower-level “mechanisms” 
responsible for that response. Such a mechanistic understanding may require additional observations or 
experiments addressing a more focussed question about process. 
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“Are the measurements of Variable Y consistent with the predictions 
of Hypothesis H?” 

This question represents the classic confrontation between theory and data 
(Hilborn and Mangel 1997). In Chapter 4 we discussed two strategies we use for this 
confrontation: the inductive approach, in which a single hypothesis is recursively 
modified to conform to accumulating data, and the hypothetico-deductive approach, in 
which hypotheses are falsified and discarded if their predictions do not match the data 
at hand. Data from either experimental or observational studies can be used to ask 
whether observations are consistent with hypothesis predictions. Unfortunately, 
ecologists do not always state this question so plainly. Two limitations are 1) many 
ecological hypotheses do not generate simple falsifiable predictions; 2) even when an 
hypothesis does generate predictions, they are rarely unique. Therefore, it may not be 
possible to definitively test Hypothesis H using only data collected on Variable Y.  
 
“Using the measurements of Variable Y, what is the best estimate of 
Parameter α in Model Z?” 

Statistical and mathematical models are powerful tools in ecology and 
environmental science. They allow us to forecast how populations and communities will 
change through time or respond to altered environmental conditions (e.g., Sjögren-
Gulve and Ebenhard 2000). Models can also help us to understand how different 
ecological mechanisms interact simultaneously to control the structure of communities 
and populations (Caswell 1988). Parameter estimation is required for building predictive 
models, and is an especially important feature of Bayesian analysis (see Chapter 5). 
Rarely is there a simple one-to-one correspondence between the value of Variable Y 
that we measure in the field and the value of Parameter α in our model. Instead, those 
parameters have to be extracted and estimated indirectly from our data. Unfortunately, 
some of the most common and traditional designs used in ecological experiments and 
field surveys, such as the analysis of variance (see Chapter 10), are not very useful for 
estimating model parameters. Chapter 7 discusses some alternative designs that are 
more useful for parameter estimation.  
 

Manipulative Experiments 
In a manipulative field experiment, the investigator first alters levels of the 

predictor variable (or factor), and then measures how one or more variables of interest 
respond to these alterations. These results are then used to test hypotheses of cause 
and effect. For example, if we are interested in testing the hypothesis that lizard 
predation controls spider density on small Caribbean islands, we could alter the density 
of lizards in a series of enclosures and measure the resulting density of spiders (e.g., 
Spiller and Schoener 1998). We could then plot these data on a graph in which the x-
axis (= independent variable) is lizard density, and the y-axis (= dependent variable) is 
spider density (Figure 6.1a, b).  

 
Our “null hypothesis” is that there is no relationship between these two variables 

(Figure 6.1a). That is, spider density might be high or low in a particular enclosure, but it 
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is not related to the density of lizards that were established in the plot. Alternatively, we 
might observe a negative relationship between spider and lizard density: enclosures 
with the highest lizard density have the fewest spiders, and vice-versa (Figure 6.1b). 
This pattern then would have to be subject to a statistical test such as regression 
analysis (Chapter 9) to determine whether or not the evidence was sufficient to reject 
the null hypothesis of no relationship between lizard and spider densities. From these 
data we could also estimate regression model parameters that quantify the strength of 
the relationship.  
 

Although field experiments are popular and powerful, they have several important 
limitations. First, it is challenging to conduct experiments on large spatial scales; over 
80% of field experiments have been conducted in plots of less than 1 m2 (Kareiva and 
Anderson 1988, Wiens 1989). When experiments are conducted on large spatial scales, 
replication is inevitably sacrificed (Carpenter 1989). Even when properly replicated, the 
results of experiments conducted on small spatial scales may not be representative of 
patterns and processes occurring at larger spatial scales (Englund and Cooper 2003).  

 
Second, field experiments are often restricted to relatively small-bodied and 

short-lived organisms that can be manipulated feasibly. Although we always want to 
generalize the results of our experiments to other systems, it is unlikely that the 
interaction between lizards and spiders will tell us much about the interaction between 
lions and wildebeest. Third, it is difficult to change one and only one variable at a time in 
a manipulative experiment. For example, cages can exclude other kinds of predators 
and prey, and introduce shading. If we carelessly compare spider densities in caged 
plots versus uncaged “controls”, the effects of lizard predation are CONFOUNDED with 
other physical differences among the treatments (we discuss solutions to confounding 
variables later in this chapter).  

 
Finally, many standard experimental designs are simply unwieldy for realistic 

field experiments. For example, suppose we are interested in investigating competitive 
interactions in a group of eight spider species. Each treatment in such an experiment 
would consist of a unique combination of species. Although the number of species in 
each treatment ranges only from 1 to 8, the number of unique combinations is 28 – 1 = 
255. If we want to establish even 10 replicates of each treatment (see “The Rule of 10”, 
below), we need 2550 plots. That may not be possible because of constraints on space, 
time, or labor. Because of all these potential limitations, many important questions in 
community ecology cannot be addressed easily with field experiments. 
 

Natural Experiments 
A NATURAL EXPERIMENT (Cody 1974) is not really an experiment at all. Instead, it 

is a survey study in which we take advantage of natural variation that is present in the 
variable of interest. For example, rather than manipulate lizard densities directly (a 
difficult, expensive and time-consuming endeavor), we could census a set of different 
plots (or islands) that vary naturally in their density of lizards (Schoener 1991). Ideally, 
these plots would vary only in the density of lizards and would be identical in all other 
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ways. We could then analyze the relationship between spider density and lizard density 
as in the field experiment described above (Figure 6.1). 
 

Natural experiments and manipulative experiments superficially generate the 
same kinds of data and are often analyzed with the same kinds of statistics. However, 
there are often important differences in the interpretation of natural and manipulative 
experiments. In the manipulative experiment, if we have established valid controls and 
maintained the same environmental conditions among the plots, any consistent 
differences in the response variable (e.g., spider density) can be attributed confidently 
to differences in the manipulated factor (e.g., lizard density). 
 

We don’t have this same confidence in interpreting results of natural 
experiments. In the natural experiment, we do not know the direction of cause and 
effect and we have not controlled for other variables that surely will differ among the 
censused plots. For the lizard-spider example, there are at least four hypotheses that 
could account for a negative association between lizard spider densities: 1) lizards may 
control spider density, which was the original hypothesis tested with the field 
experiment; 2) spiders may directly or indirectly control lizard density. Suppose, for 
example, that large hunting spiders consume small lizards, or that spiders are also 
preyed upon by birds that feed on lizards. In both cases, increasing spider density may 
decrease lizard density, even though lizards feed on spiders. 3) Both spider and lizard 
populations are controlled by an unmeasured environmental factor. For example, 
suppose that spider densities are highest in wet plots and lizard densities are highest in 
dry plots. Even if lizards have little effect on spiders, the pattern in Figure 6.1b will 
emerge: wet plots will have many spiders and few lizards, and dry plots will have many 
lizards and few spiders. 4) Environmental factors may control the strength of the 
interaction between lizards and spiders. For example, lizards might be efficient 
predators on spiders in dry plots, but inefficient predators in wet plots. In such cases, 
the density of spiders will depend on both the density of lizards and the level of moisture 
in the plot (Spiller and Schoener 1995). These four scenarios are only the simplest ones 
that might lead to a negative relationship between lizard density and spider density 
(Figure 6.2). If we add double-headed arrows to these diagrams (lizards and spiders 
reciprocally affect one another’s densities), there is an even larger suite of hypotheses 
that could account for the observed patterns (or lack thereof) in Figure 6.1. 
 

However, this does not mean that natural experiments are hopeless. In many 
cases we can collect additional data to distinguish among these hypotheses. For 
example, if we suspect that environmental variables such as moisture are important, we 
either can restrict the survey to a set of plots with comparable moisture levels, or (better 
still) measure lizard density, spider density, and moisture levels in a series of plots 
censused over a moisture gradient. You should recognize that confounding variables 
and alternative mechanisms also can be problematic in field experiments. However, 
their impacts will be reduced if the investigator conducts the experiment at an 
appropriate spatial and temporal scale, establishes proper controls, replicates 
adequately, and uses randomization to locate replicates and assign treatments.  
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Overall, manipulative experiments allow for greater confidence in our inferences 
about cause and effect, but they are limited to relatively small spatial scales and short 
time frames. Natural experiments can be conducted at virtually any spatial scale (small 
quadrats to entire continents) and over any time interval (weekly field measurements to 
annual censuses, to fossil strata). However, it is more challenging to tease apart cause 
and effect relationships in natural experiments.2 
 

Snapshot vs. Trajectory Experiments 
Two variants of the natural experiment are the SNAPSHOT EXPERIMENT and the 

TRAJECTORY EXPERIMENT (Diamond 1986). Snapshot experiments are replicated in 
space, and trajectory experiments are replicated in time. For the data in Figure 6.1, 
suppose we censused 10 different plots on a single day. This is a snapshot experiment 
in which the replication is spatial; each observation represents a different plot censused 
at the same time. On the other hand, suppose we visited a single plot in 10 different 
years. This is a trajectory experiment in which the replication is temporal; each 
observation represents a different year in the study. 
 

The advantages of a snapshot experiment are that it is rapid, and the spatial 
replicates arguably are more statistically independent of one another than are the 
temporal replicates of the trajectory experiment. The majority of ecological data sets are 
snapshot experiments, reflecting the 3 to 5 year time frame of most research grants and 
dissertation studies.3 In fact, many studies of temporal change are actually snapshot 
studies, because variation in space is treated as a proxy variable for variation in time. 
For example, successional change in plant communities can be studied by sampling 
from a CHRONOSEQUENCE - a set of observations, sites, or habitats along a spatial 
gradient that differ in the time of origin (e.g. Law et al. 2003). 
 

The advantage of a trajectory experiment is that it reveals how ecological 
systems change through time. Many ecological and environmental models describe 
precisely this kind of change, and trajectory experiments allow for stronger comparisons 
between model predictions and field data. Moreover, many models for conservation and 
environmental forecasting are designed to predict future conditions, and data for these 
models are derived most reliably from trajectory experiments. Many of the most 
                                            
2 In some cases, the distinction between manipulative and natural field experiments is not clear-cut. 
Human activity has generated many unintended large-scale experiments including eutrophication, habitat 
alteration, global climate change, and species introductions and removals. Imaginative ecologists can 
take advantage of these alterations to design studies in which the confidence in the conclusions is very 
high. For example, Knapp et al. (2001) studied the impacts of trout introductions to lakes in the Sierra 
Nevada by comparing invertebrate communities in naturally fishless lakes, stocked lakes, and lakes that 
formerly were stocked with fish. Many comparisons of this kind are possible to document consequences 
of human activity. However, as human impacts become more widespread and pervasive, it may be harder 
and harder to find sites that can be considered unmanipulated controls!  
 
3 A notable exception to short-term ecological experiments is the coordinated set of studies developed at 
Long Term Ecological Research (LTER) sites. The National Science Foundation funded the 
establishment of these sites throughout the 1980s and 1990s explicitly to address the need for ecological 
research studies that span decades to centuries. See http://www.lternet.edu/. 
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valuable data sets in ecology are long time-series data for which populations and 
communities at a site are sampled year after year with consistent, standardized 
methods. However, trajectory experiments that are restricted to a single site are 
unreplicated in space. We don’t know if the temporal trajectories described from that 
site are typical for what we might find at other sites. Each trajectory is essentially a 
sample size of one at a given site4. 
 
The Problem Of Temporal Dependence 

A more difficult problem with trajectory experiments is the potential non-
independence of data collected in a temporal sequence. For example, suppose you 
measured tree diameters each month for one year in a plot of redwood trees. 
Redwoods grow very slowly, so the measurements from one month to the next will be 
virtually identical. Most foresters would say that you don’t have 12 independent data 
points, you only have 1 (the average diameter for that year). On the other hand, monthly 
measurements of a rapidly developing freshwater plankton community reasonably could 
be viewed as more statistically independent of one another. Naturally, the further apart 
in time the samples are separated from one another, the more they function as 
independent replicates. Communities and populations that change rapidly can be 
compared more reliably with shorter census intervals than can slow-growing or long-
lived organisms (Loreau et al. 2002). 
 

But even if the “correct” census interval is used, there is still a subtle problem in 
how temporal change should be modeled. For example, suppose you are trying to 
model changes in population size of a desert annual plant for which you have access to 
a nice trajectory study, with 100 years of consecutive annual censuses. You could fit a 
standard LINEAR REGRESSION MODEL (see Chapter 9) to the time series data as follows: 
 
Equation 6.1    εββ ++= tNt 10  
 

In this equation, population size (Nt) is a linear function of the amount of time (t) 
that has passed. The coefficients β0 and β1 are the intercept and slope of this straight 
line. If β1 is less than 0.0, the population is shrinking with time, and if β1> 0, N is 
increasing. ε is a normally distributed WHITE NOISE5 error term that incorporates both 

                                            
4Snapshot and trajectory designs show up in manipulative experiments as well. In particular, some 
designs include a series of measurements taken before and after a manipulation. The “before” 
measurements serve as a type of “control” that can be compared to the measurements taken after the 
manipulation or intervention. This sort of BACI design (Before-After, Control-Impact) is especially 
important in environmental impact analysis and in studies where spatial replication may be limited. For 
more on BACI, see “Large Scale Studies and Environmental Impacts, below” and Chapter 7. 
 
5 White noise is a type of error distribution in which the errors are independent and uncorrelated with one 
another. It is called white noise as an analogy to white light, which has an equal mixture of both short and 
long wavelengths. In linear regression models, the error term ε most commonly is a standard normal 
random variable ε ~ N(0,1); more generally, the variables describing error terms are IID– independent, 
identically distributed; see Chapter 2 for further discussion of random variables. 
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measurement error and random variation in population size6. Chapter 9 will explain this 
model in much greater detail, but we introduce it now as a simple way to think about 
how population size might change in a linear fashion with the passage of time. 
 

However, this model does not take into account that population size changes 
through births and deaths affecting current population size. A TIME SERIES MODEL would 
describe population growth as: 
 
Equation 6.2    εββ ++=+ tt NN 101  
 

In this model, the population size in the next time step (Nt + 1) depends not simply 
on the amount of time t that has passed, but rather on the population size at the last 
time step (Nt). In this model, the constant β1 is a multiplier term that determines whether 
the population is exponentially increasing (β1 > 1.0) or decreasing (β1 < 1.0). As before, 
ε is a white noise error term. 
 

The linear model ( Equation 6.1) describes a simple additive increase of N with 
time, whereas the time-series, or AUTOREGRESSIVE model (Equation 6.2) describes an 
exponential increase, because the factor β1 is a multiplier that, on average, gives a 
constant percentage increase in population size at each time step. The more important 
difference between the two models, however, is that the changes in population sizes 
(DEVIATIONS) in the time-series model are correlated with one another. That is, there 
tend to be “runs” or periods of consecutive increases followed by periods of consecutive 
decreases. This is because the growth trajectory has a “memory”— each consecutive 
observation (Nt+1) depends intimately on the one that came before it (the Nt term in 
Equation 6.2). In contrast, the linear model has no memory, and the increases are a 
function only of time (and ε), and not of Nt. Hence, the positive and negative deviations 
follow one another in a purely random fashion (Figure 6.3). Correlated deviations, which 
are typical of data collected in trajectory studies, violate the assumptions of most 
conventional statistical analyses.7 New analytical and computer-intensive methods are 
                                                                                                                                             
In contrast, a red noise distribution is dominated by low-frequency perturbations, just as red light is 
dominated by low-frequency light waves. Most time series of population sizes exhibit a reddened noise 
spectrum (Pimm and Redfearn 1988), so that variances in population size increase when they are 
analyzed at larger temporal scales. White noise is simpler to analyze. Parametric regression models 
require normally-distributed error terms, so white noise distributions form the basis for most stochastic 
ecological models. However, an entire spectrum of colored noise distributions (1/f noise) may provide a 
better fit to many ecological and evolutionary data sets (Halley 1996). Incorporating 1/f noise into 
regression models require the use of general linear models that can accommodate a variety of error 
distributions. 
 
6 Naturally, it would be worthwhile to separate out the components of measurement error and process 
error (random changes in the response variable that reflect forces not included in the model). By appeal 
to the Central Limit Theorem (Chapter 2), both components are contained in ei. See Shenk et al. (1998) 
for a study of how measurement error can potentially complicate the analysis of population time series 
models. 
 
7 Actually, spatial autocorrelation generates the same problems (Legendre and Legendre 1998, Lichstein 
et al. 2003). However, tools for spatial autocorrelation analysis have developed more or less 
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being developed for analyzing both sample data and experimental data collected 
through time (Ives et al., in press, Turchin 2003). 
 

This does not mean we cannot incorporate time series data into conventional 
statistical analyses. In Chapters 7 and 10, we will discuss additional ways to analyze 
time-series data. These methods require that you pay careful attention to both the 
sampling design and the treatment of the data after you have collected them. In this 
respect, time series or trajectory observations or experiments are just like any other 
observations or experiments.  
 

Press vs. Pulse Experiments 
In manipulative studies, we also distinguish between PRESS EXPERIMENTS and 

PULSE EXPERIMENTS (Bender et al. 1984). In a press experiment, the altered conditions in 
the treatment are maintained through time and are re-applied as necessary to ensure 
that the strength of the manipulation is constant throughout the course of the 
experiment. Thus, fertilizer may have to be re-applied to plants, and animals that have 
died or disappeared from a plot may have to be replaced. In contrast, experimental 
treatments are only applied once, at the start of the study, in a pulse experiment. The 
treatment is not re-applied, and the replicate is allowed to “recover” from the 
manipulation (Figure 6.4). 
 

Press and pulse experiments measure two different responses to the treatment. 
The press experiment measures the RESISTANCE of the system to the experimental 
treatment: the extent to which it resists change in the constant environment created by 
the press experiment. A system with low resistance will exhibit a large response in a 
press experiment, whereas a system with high resistance will exhibit little difference 
between control and manipulated treatments. 
 

The pulse experiment measures the RESILIENCE of the system to the experimental 
treatment: the extent to which the system recovers from a single perturbation. A system 
with high resilience will show a rapid return to control conditions, whereas a system with 
low resilience will take a long time to recover; control and manipulated plots will 
continue to differ for a long time after the single treatment application. 
 

The distinction between press and pulse experiments is not in the number of 
treatment applications used, but in whether the altered conditions are maintained 
through time in the treatment. If environmental conditions remain constant following a 
single perturbation for the duration of the experiment, the design is effectively a press 
experiment. 
 

                                                                                                                                             
independently of time-series analyses, perhaps because we perceive time as a strictly one-dimensional 
variable and space as a two or three dimensional variable.  
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Replication 
“How much replication should I use in my experiment?”  

This is the single most common question that ecologists and environmental 
scientists ask of statisticians. The correct response is that the answer depends on the 
variance in the data and the EFFECT SIZE — the difference that you wish to detect 
between the averages of the comparison groups. Unfortunately, these two quantities 
may be difficult to estimate, although you always should consider what effect size would 
be reasonable to observe as a result of your study. 

 
To estimate variances, many statisticians will recommend that you conduct a 

pilot study. Unfortunately, pilot studies are usually not feasible— you rarely have the 
freedom to set up and run a costly or lengthy study more than once. Field seasons and 
grant proposals are too short for this sort of luxury. However, you may be able to 
estimate reasonable ranges of variances and effect sizes from previously published 
studies and from discussions with colleagues. You can then use these values to 
determine the statistical power (see Chapter 4) that will result from different 
combinations of replicates, variances, and effect sizes (see Figure 4.5 for an example). 
At a minimum, however, you need to first answer the following question: 
 
“How many total replicates can I afford to collect?”  

It takes time, labor, and money to collect either experimental or survey data, and 
you need to determine precisely what the total sample size is you can afford. If you are 
conducting expensive tissue or sample analyses, the dollar cost may be the limiting 
factor. However, in many studies, time and labor are more limiting than money. This is 
especially true for geographical surveys conducted over large spatial scales, for which 
you (and your field crew if you are lucky enough to have one) may spend as much time 
traveling to study sites as you do collecting field data. Ideally, all of your replicates 
should be measured simultaneously, giving you a perfect “snapshot” experiment. The 
more time it takes you to collect all of the data, the more conditions will have changed 
from the first sample to the last. For experimental studies, if the data are not collected 
all at once, then the amount of time that has passed since treatment application is no 
longer identical for all of your replicates.  

 
Obviously, the larger the spatial scale of your study, the harder it is going to be to 

collect all of the data within a reasonable time frame. Nevertheless, the payoff may be 
greater because your scope of inference is tied to the spatial scale of your analysis: 
conclusions based on samples taken only at one site may not be valid at other sites. 
However, there is no point in developing an unrealistic sampling design. You need 
carefully map out your project from start to finish to ensure it will be feasible.8 Only once 

                                            
8 It can be very informative to use a stopwatch to time carefully how long it takes to complete a single 
replicate measurement of your study. Like the efficiency expert father in Cheaper By The Dozen (Gilbreth 
and Carey 1949), we put great stock in such numbers. With these data, we can accurately estimate how 
many replicates we can take in an hour, and how much total field time we will need to complete the 
census. The same principle applies to sample processing, measurements that we make back in the 
laboratory, the entry of data into the computer, and the long-term storage and curation of data (See 
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you know the total number of replicates or observations that you can collect, can you 
begin to design your experiment by applying: 
 
The Rule of 10 

THE RULE OF 10 is that you should collect at least 10 replicate observations for 
each category or treatment level you wish to establish. For example, suppose you have 
determined that you can collect 50 total observations in a experiment examining 
photosynthetic rates among different plant species. A good design for a one-way 
ANOVA would be to compare photosynthetic rates among not more than five species. 
For each species, you would choose randomly 10 plants and take one measurement 
from each plant. 

 
The Rule of 10 is not based on any theoretical principle of experimental design or 

statistical analysis, but is a reflection of our hard-won field experience with designs that 
have been successful and those that have not. It is certainly possible to analyze data 
sets much smaller than 10 observations, and we ourselves often break the rule because 
of sample limitations. Balanced designs with many treatment combinations but only 4 or 
5 replicates may be quite powerful. And certain one-way designs with only a few 
treatment levels may require more than 10 replicates per treatment if variances are 
large.  

 
Nevertheless, the Rule of 10 is a solid starting point. Even if you set up the 

design with 10 observations per treatment level, it is unlikely that you will end up with 
that number. In spite of your best efforts, data may be lost for a variety of reasons, 
including equipment failures, weather disasters, plot losses, human disturbances or 
errors, improper data transcription, and environmental alterations. The Rule of 10 at 
least gives you a fighting chance to collect data with reasonable statistical power for 
revealing patterns9. In Chapter 7, we will discuss efficient sample designs and 
strategies for maximizing the amount of information you can squeeze out of your data. 

 
Large Scale Studies And Environmental Impacts 

The Rule of 10 is useful for small-scale manipulative studies where the study 
units (plots, leaves, etc.) are of manageable size. But it doesn’t apply to large-scale 
ecosystem experiments, such as whole-lake manipulations, because replicates may be 
unavailable or too expensive. The Rule of 10 also does not apply to many 
environmental impact studies, where the assessment of an impact is required at a 
single site. In such cases, the best strategy is to use a BACI DESIGN (before-after, 
control-impact). In some BACI designs, the replication is achieved through time: the 
control and impact site should be censused repeatedly both before and after the impact 

                                                                                                                                             
Chapter 8). All of these activities take time and need to be accounted for when planning an ecological 
study. 
 
9 Another useful rule is ‘The Rule of 5’– if you want to estimate the curvature or non-linearity of a 
response, you need to use at least 5 levels of the predictor variable. As we will discuss in Chapter 7, a 
better solution is to use a regression design, in which the predictor variable is continuous, rather than 
categorical, with a fixed number of levels. 
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(manipulation). The lack of spatial replication restricts the inferences to the impact site 
itself (which may be the point of the study), and requires that the impact is not 
confounded with other factors that may be co-varying with the impact at the same time. 
The lack of spatial replication in simple BACI designs is controversial (Underwood 1994, 
Murtaugh 2002), but in many cases they are the best design option (Stewart-Oaten and 
Bence 2001), especially if they are used with explicit time-series modeling (Carpenter et 
al. 1989). We will return to BACI and its alternatives in Chapters 7 and 10.  
 

Ensuring Independence 
Most statistical analyses assume that replicates are independent of one another. 

By INDEPENDENCE, we mean that the observations collected in one replicate do not have 
an influence on the observations collected in another replicate. Non-independence is 
most easily understood in an experimental context. Suppose you are studying the 
response of hummingbird pollinators to the amount of nectar produced by flowers. You 
set up two adjacent 5 x 5m plots. One plot is a control plot and the adjacent plot is a 
nectar removal plot, in which you drain all of the nectar from the flowers. You measure 
hummingbird visits to flowers in the two plots. In the control plot, you measure an 
average of 10 visits/hour, compared to only 5 visits/hour in the removal plot. 
 

However, while collecting the data, you notice that once birds arrive at the 
removal plot, they immediately leave, and the same birds then visit the adjacent control 
plot (Figure 6.5a, upper panel). Clearly, the two sets of observations are not 
independent of one another. If the control and treatment plots had been more widely 
separated in space, the numbers might have come out differently, and the average in 
the control plots might have been only 7 visits/hour instead of 10 visits/hour (Figure 
6.5b). When the two plots are adjacent to one another, non-independence inflates the 
difference between them, perhaps leading to a spuriously low P-value, and a Type I 
Error (incorrect rejection of a true null hypothesis; see Chapter 4). In other cases, non-
independence may decrease the apparent differences between treatments, contributing 
to Type II Error. Unfortunately, non-independence inflates or deflates both P-values and 
power to unknown degrees 
 

The best safeguard against non-independence is to ensure that replicates within 
and among treatments are separated from one another by enough space or time to 
ensure that the they do not affect on one another. Unfortunately, we rarely know what 
that distance or spacing should be, and this is true for both experimental and 
observational studies. We should use common sense and as much biological 
knowledge as possible. Try to look at the world from the organism’s perspective to think 
about how far to separate samples. Pilot studies, if feasible, also can suggest 
appropriate spacing to ensure independence among samples. 
 

So, why not just maximize the distance or time between samples? First, as we 
described earlier, it becomes more expensive to collect data as the distance between 
samples increases. Second, moving the samples very far apart can introduce new 
sources of variation because of differences (heterogeneity) within or among habitats. 
We want our replicates close enough together to ensure they we are sampling relatively 
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homogenous or consistent conditions, but far apart enough to ensure that the 
responses we measure are independent of one another.  
 

In spite of its central importance, the independence problem is almost never 
discussed explicitly in scientific papers. In the Methods section of a paper, you are likely 
to read a sentence such as, “We measured 100 randomly selected seedlings growing in 
full sunlight. Each measured seedling was at least 50 cm from its nearest neighbor.” 
What the authors mean is “We don’t know how far apart the observations would have to 
have been in order to ensure independence. However, 50 cm seemed like a fair 
distance for the tiny seedlings we studied. If we had chosen distances greater than 50 
cm, we could not have collected all of our data in full sunlight, and some of the 
seedlings would have been collected in the shade, which obviously would have 
influenced our results.” 
 

Avoiding Confounding Factors 
When factors are confounded with one another, we mean that their effects 

cannot be easily disentangled from another. Let’s return to the hummingbird example. 
Suppose we prudently separated the control and nectar removal plots, but inadvertently 
placed the removal plot on a sunny hillside and the control plot in a cool valley (Figure 
6.6). Hummingbirds forage less frequently in the removal plot (7 visits/hour), and the 
two plots are now far enough apart that there is no problem of independence. However, 
hummingbirds naturally tend to avoid foraging in the cool valley, so the foraging rate 
also is low in these plots (6 visits/hour). Because the treatments are confounded with 
temperature differences, we cannot tease apart the effects of foraging preferences from 
those of thermal preferences. In this case, the two forces largely cancel one another, 
leading to comparable foraging rates in the two plots, although for very different 
reasons. 
 

This example may seem a bit contrived. Knowing the thermal preferences of 
hummingbirds, we would not have set up such an experiment,. The problem is that 
there are likely to be unmeasured or unknown variables– even in an apparently 
homogenous environment– that can have equally strong effects on our experiment. 
And, if we are conducting a natural experiment, we are stuck with whatever confounding 
factors are present in the environment. In an observational study of hummingbird 
foraging, we may not be able to find plots that differ only in their levels of nectar rewards 
but do not also differ in temperature and other factors known to affect foraging behavior. 
 

Replication & Randomization 
The dual threats of confounding factors and non-independence would seem to 

threaten all of our statistical conclusions and render even our experimental studies 
suspect. Incorporating REPLICATION and RANDOMIZATION into experimental designs can 
largely offset the problems introduced by confounding factors and non-independence. 
By replication, we mean establishing multiple plots or observations within the same 
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treatment or comparison group. By randomization, we mean the random assignment of 
treatments or selection of samples.10 
 

Let’s return one more time to the hummingbird example. If we follow the 
principles of randomization and replication, we will set up many replicate control and 
removal plots (ideally, a minimum of 10 of each). The location of each of these plots in 
the study area will be random, and the assignment of the treatment (control or removal) 
to each plot will also be random (Figure 6.7).11 
 

How will randomization and replication reduce the problem of confounding 
factors? Because both the warm hillside, the cool valley, and several intermediate sites 
each will have multiple plots from both control and nectar removal treatments. Thus, the 
temperature factor is no longer confounded with the treatment, as all treatments occur 
within each level of temperature (as an additional benefit, this design will also allow you 
to test the effects of temperature as a covariate on hummingbird foraging behavior, 
independent of the levels of nectar – see Chapters 7 and 10). It is true that hummingbird 
visits will still be more frequent on the warm hillside than in the cool valley, but that will 
be true for replicates of both the control and nectar removal. The temperature will add 
more variation to the data, but it will not bias the results because the warm and cool 
plots will be distributed approximately equally between the control and removal 
treatments. Of course, if we knew ahead of time that temperature was an important 
determinant of foraging behavior, we would not have used this design for the 

                                            
10 Many samples that are claimed to be random are really HAPHAZARD. Truly random sampling means 
using a random number generator (such as the flip of a fair coin, the roll of a fair die, or the use of a 
reliable computer algorithm for producing random numbers) to decide which replicates to use. In contrast, 
with haphazard sampling, an ecologist follows a set of general criteria (e.g., mature trees > 3 cm diameter 
at breast height (dbh=1.3 m)) and selects sites or organisms that are spaced homogenously or 
conveniently within a sample area. Haphazard sampling is often necessary at some level because 
random sampling is not efficient for many organisms kinds of organisms, especially if their distribution is 
spatially patchy. However, once a set of organisms or sites is identified, randomization should be used to 
sample or to assign replicates to different treatment groups. 
 
11 Randomization takes some time, and you should do as much of it as possible in advance, before you 
get into the field. It is easy to generate random numbers and simulate random sampling with computer 
spreadsheets. But it is often the case that you will need to generate random numbers in the field. Coins 
and dice (especially 10-sided gaming dice) are useful for this purpose. A clever trick is to use a set of 
coins as a “binary random number generator”. For example, suppose you have to assign each of your 
replicates to one of 8 different treatments, and you want to do so randomly. Toss 3 coins, and convert the 
pattern of heads and tails to a binary number (i.e., a number in base 2). Thus, the first coin indicates the 
1s, the second coin indicates the 2s, the third coin indicates the 4s, and so on. Tossing 3 coins will give 
you a random integer between 0 and 7. If your three tosses are heads, tails, heads (HTH), you have a 1 
in the one’s place, a 0 in the two’s place, and a 1 in the four’s place. The number is 1 + 0 + 4 = 5. A toss 
of (THT) is 0 + 2 + 0 = 2. Three tails gives you a 0 (0 + 0 + 0) and three heads give you a 7 (1 + 2 + 4). 
Tossing 4 coins will give you 16 integers, and 5 coins will give you 32. 
 
An even easier method is to take a digital stopwatch into the field. Let the watch run for a few seconds 
and then stop it without looking at it. The final digit that measures time in 1/100th of a second can be used 
as a random uniform digit from 0 to 9. A statistical analysis of 100 such random digits passed all of the 
standard diagnostic tests for randomness and uniformity (B. Inouye, pers. comm.). 
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experiment. Randomization minimizes the confounding of treatments with unknown or 
unmeasured variables in the study area. 
 

It is less obvious how randomization and replication reduce the problem of non-
independence among samples. After all, if the plots are too close together, the foraging 
visits will not be independent, regardless of the amount of replication or randomization. 
Whenever possible, we should use common sense and knowledge of biology to 
separate plots or samples by some minimum distance or sampling interval to avoid 
dependence. However if we do not know all of the forces are that can cause 
dependence, a random placement of plots beyond some minimum distance will ensure 
that the spacing of the plots is variable. Some plots will be relatively close, and some 
will be relatively far apart. Therefore, the effect of the dependence will be strong in 
some pairs of plots, weak in others, and nonexistent in still others. Such variable effects 
may cancel one another and can reduce the chances that results are consistently 
biased by non-independence. 
 

Finally, note that randomization and replication only are effective when they are 
used together. If we do not replicate, but only assign randomly the control and treatment 
plots to the hillside or the valley, the design is still confounded (Figure 6.6). Similarly, if 
we replicate the design, but assign all 10 of the controls to the valley and all 10 of the 
removals to the hillside, the design is also confounded (Figure 6.8). It is only when we 
use multiple plots and assign the treatments randomly that the confounding effect of 
temperature is removed from the design (Figure 6.7). Indeed, it is fair to say that any 
unreplicated design is always going to be confounded with one or more environmental 
factors12. 
 

Although the concept of randomization is straightforward, it must be applied at 
several stages in the design. First, randomization applies only to a well-defined, initially 
non-random, sample space. The sample space doesn’t simply mean the physical area 
from which replicates are sampled (although this is an important aspect of the sample 
space). Rather, the sample space refers to a set of elements that have experienced 
similar, though not identical conditions.  

 
Examples of a sample space might include individual cutthroat trout that are 

reproductively mature, lightfall gaps created by fires, old-fields abandoned 10-20 years 
                                            
12 Although confounding is easy to recognize in a field experiment of this sort, it may not be apparent that 
the same problem exists in laboratory and greenhouse experiments. If we rear insect larvae at high and 
low temperatures in two environmental chambers, this is a confounded design because all of the high 
temperature larvae are in one chamber and all of the low temperature larvae are in the other. If 
environmental factors other than temperature also differ between the chambers, their effects are 
confounded with temperature. The correct solution would be to rear each larva in its own separate 
chamber, thereby ensuring that each replicate is truly independent and that temperature is not 
confounded with other factors. But this sort of design simply is too expensive and wasteful of space ever 
to be used. Perhaps the argument can be made that environmental chambers and greenhouses really do 
differ only in temperature and no other factors, but that is only an assumption that should be tested 
explicitly. In many cases, the abiotic environment in environmental chambers is surprisingly 
heterogeneous, both within and between chambers. Potvin (2001) discusses how this variability can be 
measured and then used to design better laboratory experiments. 
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ago, or large, bleached coral heads at 5-10 meters depth. Once this sample space has 
been defined clearly, sites, individuals, or replicates that meet the criteria should be 
chosen at random. As we noted in Chapter 1, the spatial and temporal boundaries of 
the study will dictate not only the sampling effort involved, but also the domain of 
inference for the conclusions of the study.  
 

Once sites or samples are randomly selected, treatments should be assigned to 
them randomly, which ensures that different treatments are not clumped in space or 
confounded with environmental variables.13 Samples should also be collected and 
treatments applied in a random sequence. That way, if environmental conditions change 
during the experiment, the results will not be confounded. For example, if you census all 
of your control plots first, and your field work is interrupted by a fierce thunderstorm, any 
impacts of the storm will be confounded with your manipulations because all of the 
treatment plots will be censused after the storm. These same provisos hold for non-
experimental studies in which different plots or sites have to be censused. The caveat is 
that strictly random censusing in this way may be too inefficient because you will usually 
not be visiting neighboring sites in consecutive order. You may have to compromise 
between strict randomization and constraints imposed by sampling efficiency. 
 

All methods of statistical analysis — whether they are parametric, Monte Carlo, 
or Bayesian (Chapter 5) — rest on the assumption of random sampling at some spatial 
or temporal scale. You should get in the habit of using randomization whenever possible 
in your work. 

 
Designing Effective Field Experiments & Sampling Studies 

Here are some questions to ask when designing field experiments and sampling 
studies. Although some of these questions appear to be specific to manipulative 
experiments, they are also relevant to certain natural experiments, where “controls” 
might consist of plots lacking a particular species or set of abiotic conditions. 
 
1) Are the plots or enclosures large enough to ensure realistic results? Field 
experiments that seek to control animal density must necessarily constrain the 
movement of animals. If the enclosures are too small, the movement, foraging, and 
mating behaviors of the animals may be so unrealistic that the results obtained will be 
uninterpretable or meaningless (MacNally 2000). Try to use the largest plots or cages 
that are feasible and that are appropriate for the organism you are studying. The same 
considerations apply to sampling studies: the plots need to be large enough and 
sampled at an appropriate spatial scale to answer your question. 

                                            
 
13 If the sample size is too small, even a random assignment can lead to spatial clumping of treatments. 
One solution would be to set out the treatments in a repeated order (…123123...), which ensures that 
there is no clumping. However, if there is any non-independence among treatments, this design may 
exaggerate its effects, because treatment #2 will always occur spatially between treatments #1 and #3. A 
better solution would be to repeat the randomization and then statistically test the layout to ensure there 
is no clumping. See Hurlbert (1984) for a thorough discussion of the numerous hazards that can arise by 
failing to properly replicate and randomize ecological experiments. 
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2) What is the grain and extent of the study? Although much importance has been 
placed on the spatial scale of an experiment or a sampling study, there are actually two 
components of spatial scale that need to be addressed: GRAIN and EXTENT. Grain is the 
size of the smallest unit of study, which will usually be the size of an individual replicate 
or plot. Extent is the total area encompassed by all of the sampling units in the study. 
Grain and extent can be either large or small (Figure 6.9). There is no single 
combination of grain and scale that is necessarily “correct”. However, ecological studies 
with both a small grain and a small extent, such as pitfall catches of beetles in a single 
forest plot, may sometimes be too limited in scope to allow for broad conclusions. On 
the other hand, studies with a large grain but a small extent, such as whole-lake 
manipulations in a single valley, may be very informative. Our own preference is for 
studies with a small grain, but a medium or large extent, such as ant and plant 
censuses in small plots (5m x 5 m) across New England (Gotelli and Ellison 2002a, 
2002b) or eastern North America (Gotelli and Arnett 2000) or need descriptor of grain 
and extent (Farnsworth and Ellison 1996). The small grain allows for experimental 
manipulations and observations taken at scales that are relevant to the organism, but 
the large extent expands the domain of inference for the results. In determining grain 
and extent, you should consider both the question you are trying to ask, and the 
constraints on your sampling. 
 
3) Does the range of treatments or census categories bracket or span the range of 
possible environmental conditions? Many field experiments describe their manipulations 
as “bracketing or spanning the range of conditions encountered in the field.” However, if 
you are trying to model future environmental or climate changes, it may be necessary to 
also include conditions that are outside the range of those normally encountered in the 
field. 
 
4) Have appropriate controls been established to ensure that results reflect variation 
only in the factor of interest? It is rare that a manipulation will change one and only one 
factor at a time. For example, if you surround plants with a cage to exclude herbivores, 
you have also altered the shading and moisture regime. If you simply compare these 
plants to unmanipulated controls, the herbivore effects are confounded with the 
differences in shading and moisture. The most common mistake in experimental 
designs is to establish a set of “unmanipulated” plots and then treat those as a “control”. 
Usually, an additional set of control plots that contain some minimal alteration will be 
necessary to properly control for the manipulations. In the example described above, an 
open-sided cage roof will allow herbivores access to plants, but still include the shading 
effects of the cage. With this simple design of 3 treatments (e.g., unmanipulated, cage 
control, herbivore exclusion), you can make the following contrasts: 
 

a) unmanipulated vs. cage control: This comparison reveals the extent to which 
shading and physical changes due to the cage per se are affecting plant growth 
and responses. 
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b) cage control vs. herbivore exclusion: This comparison reveals the extent to 
which herbivory alters plant growth. Both the control and herbivore exclusion 
plots experience the shading effects of the cage, so any difference between them 
can be attributed to the effect of herbivores. 

 
c) unmanipulated vs. herbivore exclusion. This comparison measures the 
combined effect of both the herbivores and the shading on plant growth. Because 
the experiment is designed to measure only the herbivore influence, this 
comparison is confounded. 

 
In Chapter 10, we will explain how you use can use contrasts after analysis of variance 
to quantify these comparisons. 
 
5) Have all replicates been manipulated in the same way, except for the intended 
treatment application? Again, appropriate controls usually require more than lack of 
manipulation. If you have to push back plants to apply treatments, you should push 
back plants in the control plots as well (Salisbury 1963, Jaffe 1980). In a reciprocal 
transplant experiment with insect larvae, live animals may be sent via overnight courier 
to distant sites and established in new field populations. The appropriate control is a set 
of animals that are re-established in the populations from which they were collected. 
These animals will also have to receive the “UPS treatment” and be sent through the 
mail system to ensure they receive the same stress as the animals that were 
transplanted to distant sites. If you are not careful to ensure that all organisms are 
treated identically in your experiments, your treatments will be confounded with 
differences in handling effects (Cahill et al. 2000). 
 
6) Have appropriate covariates been measured in each replicate? COVARIATES are 
factors that vary among plots that potentially affect the response variable, but are not 
related to your treatment. Examples include variation in temperature, shade, pH, 
herbivore density, and any other factor that you suspect might be important. An analysis 
of covariance (Chapter 10) can allow you to account for variation in the data that is 
associated with these covariates, and then determine if this variation is associated with 
your treatments or results. Thus, measurement of covariates has the potential to 
increase the statistical power of your test. 
 

However, you should avoid the temptation to measure every conceivable 
covariate in a plot, just because you have the instrumentation (and the time) to do so. 
You will quickly end up with a dataset in which you have more variables measured than 
you have replicates, which causes larger problems during the analysis (Burnham and 
Anderson 2002). It is better to choose ahead of time the most biologically relevant 
covariates, measure only those, and use sufficient replicates. Remember also, that the 
measurement of covariates is useful, but it is not a substitute for proper randomization 
and replication. 
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Summary 
The sound design of an ecological experiment first requires a clear statement of 

the question being asked. Both manipulative and observational experiments can answer 
ecological questions, and there each type of experiment has its own strengths and 
weaknesses. Investigators should consider the appropriateness of using a press vs. a 
pulse experiment, and whether the replication will be in space (snapshot experiment), 
time (trajectory experiment), or both. Non-independence and confounding factors can 
compromise the statistical analysis of both manipulative and observational studies. 
Randomization, replication, and knowledge of the ecology and natural history of the 
organisms, are the best safeguards against non-independence and confounding factors. 
Whenever possible, at least 10 observations per treatment group should be used. Field 
experiments usually require carefully designed controls to account for handling effects 
and other unintentional alterations. Measurement of appropriate environmental 
covariates be used to account for uncontrolled variation, although it is not a substitute 
for randomization and replication. 
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Figure 6.1 Relationship between lizard density and spider density in manipulative and 
natural field experiments. Each point represents a plot or quadrat in which both spider 
density and lizard density has been measured. The null hypothesis (left) is that lizard 
density has no effect on spider density. The alternative hypothesis (right) is that lizard 
predation controls spider density, leading to a negative relationship between these two 
variables. In a manipulative field experiment, the investigator establishes the lizard density 
in each plot. In a natural experiment, the investigator chooses plots that vary naturally in 
lizard density. In a snapshot natural experiment, each data point represents a different plot; 
all plots are censused at the same time (a spatial ‘snapshot’ measure of the variation). In a 
trajectory natural experiment, each point represents a census taken at a different time (a 
temporal ‘trajectory’ measure of the variation); all measurements are taken from a single 
plot.  
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Figure 6.2 Mechanistic hypotheses to account for correlations between lizard density and spider 
density observed in a natural experiment (Figure 6.1). The cause and effect relationship might be from 
predator to prey (upper left) or prey to predator (upper right). More complicated models include the 
effects of other biotic or abiotic variables. For example, there might be no biotic interaction between 
spiders and lizards, but densities of both are controlled by a third variable, such as moisture (lower 
left). Alternatively, moisture might have an indirect effect by altering the interaction of lizards and 
spiders (lower right). In a natural experiment, simple correlations between variables will not 
discriminate among alternative models. Usually additional data and experiments are needed to test 
more specific hypotheses. Path analysis, described in Chapter 9, uses path diagrams of exactly this 
kind to test mechanistic hypotheses with regression data (e.g., Figure 9.15). 
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Figure 6.3. Examples of deterministic and stochastic time series, with and without autocorrelation. A 
linear model without error (dashed line) illustrates a constant upward trend in population data. To this 
model, we can add a stochastic ‘white noise’ error term (black line), in which the errors are random 
and independently distributed in each time step. Finally, an autocorrelated model (grey line) describes 
population size in the next time step (t + 1) as a function of the population size in the current time step 
(t) plus random noise. Although the error term in this model is still a simple random variable, the 
resulting time series shows autocorrelation—there are “runs” of population increases followed by runs 
of population decreases. Each population begins with 100 individuals. For the linear model and the 
stochastic white-noise model, the equation is Nt = a + bt + ε, with a = 100 and b = 0.10. For the 
autocorrelated model, Nt+ 1 = a + bNt + ε, with a = 0.0 and b = 1.0015. For both models with error, ε is a 
random normal (0,1) variable. Simple time-series data in which the observations behave 
independently (dashed line, black line) can be analyzed with repeated-measures ANOVA designs. 
Complicated time-series data in which the observations are autocorrelated (gray line) may require 
special methods, such as time series models.  
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Figure 6.4. Ecological pulse and press experiments. The arrow indicates a treatment 
application, and the line indicates the temporal trajectory of the response experiment. The 
press experiment measures the response under constant conditions (resistance), 
whereas the pulse measures the response to a single treatment application (resilience). 
Another distinction between press and pulse experiments is that the press experiment 
measures the response of the system under equilibrium conditions, whereas the pulse 
experiment records transient responses to the perturbation. 
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Figure 6.5. The problem of non-independence in ecological studies is illustrated by an experimental 
design in which birds forage for nectar in control plots in plots in which nectar has been removed from all 
of the flowers. In a non-independent layout (Figure 6.5a, upper panel), the nectar removal and control 
plots are adjacent to one another, and birds that enter the nectar removal plot immediately leave and 
begin foraging in the adjacent control plot. As a consequence, the data collected in the control plot are not 
independent of the data collected in the nectar removal plot: the responses in one treatment influence the 
responses in the other. If the layout is modified so that the two plots are widely separated (Figure 6.5b, 
lower panel), birds that leave the nectar removal plot do not necessarily enter the control plot. The two 
plots are independent, and the data collected in one plot are not influenced by the presence of the other 
plot. Although it is easy to illustrate the potential problem of non-independence, in practice it is can be 
very difficult in ecological studies to know ahead of time the “correct” spatial and temporal scales that will 
ensure statistical independence of samples. 
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Figure 6.6. The problem of a confounded design and lack of replication in ecological studies. As in Figure 
6.5, the study establishes control and experimental nectar removal plots to evaluate the responses of 
avian foraging. In this design, although the plots are far enough part to ensure independence, they have 
been placed at different points in a thermal gradient. Consequently, the treatments effects are 
confounded with differences due to the thermal environment. The net result is that the experiment 
compares data from a warm nectar removal plot with data from a cool control plot. Whether there are 
statistical differences in the data or not, it will be impossible to know how much of the difference (or lack 
thereof) between the treatments reflects foraging responses to nectar availability in the plots, foraging 
responses to the temperature in the plots, or some complex interaction between nectar availability and 
temperature. In a well-designed experiment, treatments should differ only by the factor that the 
experiment is trying to test. Because the design is not replicated, any differences between the plots other 


