Are Hydrologic Benchmark Network Watersheds Recovering From Acid Deposition?

An Update of Mike McHale's 2013 Presentation

Jason Siemion, Michael R. McHale, Gregory B. Lawrence, and Douglas A. Burns

What does recovering mean?

- Not a return to original condition
- Statistically significant chemical changes?
 - decreasing acidity
 - increasing soil calcium
- Ecologically significant changes?

 upper B horizon base saturation >12% (Sullivan et al , 2013)
 A horizon Ca_{ex} > 2.5 Cmol_c kg⁻¹ (Sullivan et al , 2013)

What is HBN?

- 35 primarily undisturbed watersheds across the US
- Provides a long-term record of stream flow and water quality (since 1960s)
- Soil sampling of HBN sites began in 2011 (additional USGS reference sites as well)
- 3 sites sampled previously (Greg Lawrence)
- Deposition stations co-located in these 3 watersheds

HBN Sites

Soil Sampling 2001 to 2011

Analysis

- Seasonal Kendal test for trends in deposition and stream water (Doug Burns and Mike McHale)
- Soil...lumped all central and satellite pits for either Oa or A and upper B at each site (n=10 to 15), t test or rank sum test for significant differences depending on normality

Need to re-analyze archived samples

About the Watersheds

Young Womans Creek (120 km²)

 sandstone, shale, siltstone, occasional calcareous lenses
 unglaciated, ultisols and inceptisols
 northern and mixed upland hardwoods

Upper Slope

About the Watersheds

Neversink River (172 km²)

 sandstone, siltstone, and shale
 glaciated, inceptisols and few spodosols
 northern hardwoods, spruce-fir on ridge tops

Upper Slope

About the Watersheds

- Wild River (180 km²)
 - metasedimentary and metavolcanic bedrock
 - glaciated, spodosols
 - northern hardwoods, spruce-fir at high elevations

Mid Slope

≥USGS

Trends in Deposition

oung Womans Cr.

Neversink R.

Wild R

Wild River = N

Sulfate -1.3 ueqL⁻¹yr⁻¹ Nitrate -0.6 ueqL⁻¹yr⁻¹ Ammonium no significant trend Base Cations < -0.03ueqL⁻¹yr⁻¹ Similar results to Mast (2013)

Trends in Stream Chemistry From Mast (2013)

- Sulfate 1970-2010: Young Womans = -0.4 ueqL⁻¹Yr⁻¹ Neversink = -2.0 ueqL⁻¹Yr⁻¹ Wild River = -1.0 ueqL⁻¹Yr⁻¹
- Sulfate 1990-2010: Young Womans = -1.4 ueqL⁻¹Yr⁻¹ Neversink = -2.3 ueqL⁻¹Yr⁻¹ Wild River = -0.8 ueqL⁻¹Yr⁻¹
- Nitrate 1990-2010: Young Womans = -0.7 ueqL⁻¹Yr⁻¹ Neversink = No Significant Trend Wild River = Insufficient Data

Trends in Stream Chemistry From Mast (2013)

- ANC 1970-2010: Young Womans = -0.9 ueqL⁻¹Yr⁻¹ Neversink = 0.1 ueqL⁻¹Yr⁻¹ Wild River = -1.2 ueqL⁻¹Yr⁻¹
- ANC 1990-2010: Young Womans = 1.0 ueqL⁻¹Yr⁻¹ Neversink = 0.7 ueqL⁻¹Yr⁻¹ Wild River = -0.1 ueqL⁻¹Yr⁻¹

Changes in Soil Base Saturation

Changes in Soil Total Carbon

Changes in Soil Ca_{ex}

Changes in Soil pH

Changes in Soil Al_{ex}

Changes in Soil H_{ex}

Changes in Soil Al_{ex}:Ca_{ex} Ratios

≥USGS

≥USGS

Significantly decreasing sulfate and nitrate deposition.

Are the HBN watersheds recovering?

Are the HBN watersheds recovering? Sort of....

- Improving stream chemistry
- Start of soil recovery in the Neversink River?
- Soils in Young Womans Creek and Wild River not responding to decreased deposition

Summary

- Young Womans...highest deposition... soil not responding to declining deposition...but soil still base rich relative to other sites
- Neversink...moderate deposition...A horizon starting to respond to declining deposition...base poor B horizon
- Wild River...low deposition...soil not responding declining deposition...
 base poor B horizon

