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ABSTRACT

A detailed characterization of the human brain, its struc-
tural and functional underpinnings, remains on the frontier
of modern science. Neurological research is important not
only for its intrinsic interest, but for the purpose of better
understanding (diagnosing and treating) neurological disor-
der as well. Happily, along with many other fields, neuro-
science is entering an era of “Big Data” in which a new ap-
proach is possible: start from the data, then get to a theory
(rather than testing a theory by collecting data).

The introduction and exploration of a methodology de-
signed to implement this approach is the subject of this
study. Evolutionary symbolic regression is performed on
brain imaging data, using software called Eureqa, in order to
discover and characterize interaction between regions of the
brain. The technique is applied to two data sets: (1) a single
subject performing two different, but related, tasks; and (2)
a different subject performing no task, whose brain is said to
be in a “resting state”. Results suggest that the methodol-
ogy provides meaningful information, in that active regions
are correctly predicted and tasks classified in (1), and many
of the known resting-state interactions are uncovered in (2).
Furthermore, the technique characterizes interactions as ei-
ther linear or nonlinear, providing more information than
current methods (which make a linear assumption).

As each data set comes from only one subject, and some
details of the methodology require principled refinement, we
emphasize the exploratory nature of this study. Results pre-
sented suggest the potential of the methodology, but should
be taken as preliminary and unvalidated.
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1. INTRODUCTION

The detailed workings of the human brain remain a mys-
tery to modern science. Though some things are understood
in a fuzzy sense, for example the primary regions responsi-
ble for motor, visual and auditory response, the connectivity
and interaction within and between such regions has not yet
been fully described. This study is a preliminary investiga-
tion of an evolutionary technique for (1) teasing out such
interactions; and (2) describing the nature of those interac-
tions.

A Genetic Programming (GP) package called Eureqa, de-
veloped by Schmidt et. al. [[8] [9]], is used to regress func-
tional relationships between 17 selected regions of the brain
of a subject performing two slightly different tasks in re-
sponse to a visual stimulus. The goal is to determine, for
each region, which other regions it “depends” on, and also to
determine the qualitative nature of that dependence, i.e., lin-
ear vs. nonlinear. Also, the technique is applied to uncover
interactions between regions of the brain when a subject is
given no task, and the brain is in a so-called “resting state”,
which is somewhat of a misnomer.

The General Linear Model (GLM) is the current method
of analysis for determining correlations of neuronal activ-
ity among regions of the brain |1]. In contrast with the
GLM, the method proposed here avoids the assumption of
linearity. Furthermore, application of the GLM requires a
priori knowledge of a stimulus administered to the subject,
whereas no stimulus is required at all for the evolutionary
approach. This means that the GLM can’t be used (without
modification) to study the resting state of the brain. Details
of the GLM will be presented in the Background section.

Measurement of activity in the brain is accomplished by
functional Magnetic Resonance Imaging (fMRI). 3-D images
of a subject’s brain are captured real-time, and show con-
trast in blood-oxygen-level dependence (BOLD). The BOLD
signal (resulting from a time series of fMRI images) is taken
as a proxy for neuronal activity [11]. The approach proposed
in this study consists of using GP to evolve models that ex-
press the BOLD signal from a particular region of the brain
as a function of the concurrent BOLD signals from other
regions. The interpretation, however, is not of dependence
necessarily, but of interaction. It is correlation, and the na-
ture of that correlation, that is sought, not causation.

The rest of the paper is structured as follows: Section
2 contains background information describing (1) fMRI in



more detail, including a discussion of the risks in taking the
BOLD signal as a proxy for neuronal activity; (2) the appli-
cation of the GLM, and its limitations; and (3) the GP pack-
age Eureqa. Section 3 details the experiments performed to
test the evolutionary approach to uncovering brain interac-
tions, and results appear in Section 4 along with a discussion.
Finally, we conclude the paper in Section 5.

2. BACKGROUND

Before describing the evolutionary approach to discover-
ing interactions in the brain, we present some background
information about neuroimaging with fMRI in Section 2.1,
detail the current GLM method for studying brain activation
in Section 2.2, and give some specifics about the GP pack-
age Eureqa used to implement the evolutionary approach in
Section 2.3.

2.1 Neuroimaging with fMRI

Direct measurement of electrical neuron activity is not
easily accomplished. Electroencephalograms (EEGs) can be
recorded by placing electrodes on the surface of subject’s
head, and are adequate for measuring an averaged whole-
brain electrical signal. However, targeting specific regions
of the brain, especially at the resolution of a neuron, is not
possible with current technology. Highly invasive procedures
involving the placement of electrodes directly on the surface
(or even inside) of the brain do exist, but this is obviously not
practical for large scale studies, nor for measuring activity
at many locations in a single brain. This difficulty in direct
measurement is the motivation for neuroimaging.

One of the most recent methods of neuroimaging, devel-
oped about 20 years ago, is functional MRI. 3-D images
of the brain captured by magnetic field indicate changes in
blood flow, called the hemodynamic response, that corre-
late with neuronal activity. The reason for this correlation
is that active neurons require more glucose and oxygen than
inactive ones, and thus neuronal activity is said to be blood-
oxygen-level dependent, giving rise to the name BOLD for
the fMRI signal [11]. It is important to note that there is
some danger in using the BOLD signal as a proxy for neu-
ronal activity. Many other factors contribute to increased
blood flow in the brain, including contraction/dilation of
vasculature, the structure of that vasculature (which can

vary considerably with demographic), and even subject-specific

general health and behavioral habits. It is basically impossi-
ble to separate these factors. There are some techniques for
reducing the effect of conflation [7], and also modifications
to the standard fMRI procedure that effectively use other
proxies for activity [4], but these methods are outside the
scope of this paper.

Very high image resolutions are attainable with fMRI.
For this work, the data collected fall on a grid with voxels
(3D pixels) approximately 3mm on a side, corresponding to
about 50,000 voxels in a single whole-brain image. Typically,
a region of the brain is represented by an averaged BOLD
signal over some number of contiguous voxels, in order to
smooth the noise present in a single voxel. The temporal
resolution at which data can be collected depends on how
much of the brain is being imaged (and the equipment). Un-
fortunately, imaging the whole-brain takes about 2 seconds
on the equipment used for this study, and even state-of-the-
art equipment doesn’t perform much better. This has two
important implications: first, many processes in the brain

occur at a timescale not resolvable by fMRI; and second, a
single 3D image is taken a slice at-a-time over the 2 sec-
onds, so that the interpretation of concurrency is loose, to
say the least. A technique called time-slice correction, which
we won’t describe here, is used to give the best estimate of
brain-state in the 2-second window.

Other challenges in the collection of fMRI data include the
necessity of motion correction resulting from unavoidable
head movement during the scan (5], and the transformation
of the image into “standard brain-space” for the purposes of
comparison between subjects [2]. Neither of these are trivial,
but the techniques used to address these challenges are also
outside the scope of this paper. Despite proxy data issues,
correction for motion and temporal misalignment, required
transformations, and probably other issues we neglect here,
fMRI has proven to reveal meaningful and reproducible re-
sults for 20 years.

2.2 The General Linear Model

The GLM is the current method used to determine if a re-
gion of the brain is activated in response to a stimulus signal.
A multi-variable linear regression is performed, whereby the
mean BOLD signal B from the region is fitted to a linear
combination of the expected hemodynamic response to the
stimulus, which we call s, and any nuisance variables n; that
are not of interest, for example fluctuations due to the heart
beating. Thus,

B = Bs+aini +asna+ ... +¢ (1)

where € is an error term. If, over many trials, # is bounded
away from zero in a statistically significant sense, then the
region is determined to be activated by the stimulus [1]. An
example of a BOLD signal, response to stimulus, and possi-
ble nuisance variables appears in Figure [1] To perform the
linear regression, note that the form of the stimulus signal
must be known a priori.
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Figure 1: Examples of a BOLD signal B, expected
hemodynamic response s to a visual stimulus, and
illustrative examples of possible nuisance variables
ni,2, top to bottom, respectively. The units of the
BOLD signal are unimportant here, and the bottom
3 signals into which B is to be linearly decomposed
are scaled to have maximum amplitude of 1.



Regions of the brain that co-activate in response to a par-
ticular stimulus, or type of stimulus, are often interpreted
as being related, or interacting. However, the nature of
their interaction or relationship can’t be determined using
the GLM, as it is assumed to be both linear and a direct
result of an applied stimulus. By performing symbolic re-
gression, the assumption of linearity can be avoided, and re-
gressing brain regions with respect to one another, instead
of a stimulus, allows the discovery of interactions in response
to unknown stimuli, for example the self-stimuli in intrinsic
(“resting state”) brain activity. This is the motivation for
the evolutionary technique presented in this work, which is
carried out with Eureqa.

2.3 Eureqa

Eureqa uses symbolic regression to find an analytical so-
lution to explain experimental data. Symbolic regression,
as implemented in Eureqa, creates an initial population of
functional forms from user-specified building blocks, which
are stored as the operator and terminal sets. These building
blocks can consist of a range of operators, including arith-
metic, trigonometric, exponential, etc. Using a graph-based
representation (parse tree) the genotype is arranged such
that the top and middle of the tree is created from members
of the operator set, and the leaves consist of members of the
terminal set. The phenotype is then the function created
from this parse tree.

Once the initial population has been created, standard
EA techniques (mutation/crossover) are used to generate
offspring. Eureqa uses single point crossover, where a ran-
dom branch is swapped between two individuals to form two
offspring. Mutation, which occurs exclusive of crossover,
picks a random location in the tree and swaps an operator
for another operator of the same arity, or swaps a terminal
node with another member of the terminal set. Typically
mutation will occur with a probability ~ 1% and crossover
with a probability > 50%. These offspring then need to be
evaluated for fitness. Since the goal of symbolic regression
is to find a functional form that explains the data, a natural
fitness evaluation is the error between the functional output,
and the provided data.

Eureqa is in continuous development, and as such it imple-
ments new genetic programming techniques when possible.
For this paper, beta version .84 was used, which incorporates
the island model for parallelization and age-fitness Pareto
for selection. As these are improvements to the basic GP
technique, a brief discussion of each techniques follows.

The island genetic algorithm model [12],[6] was originally
developed as a method for parallelizing genetic algorithms,
but it has the added benefit of helping to prevent prema-
ture convergence. In the island model, as implemented in
Eureqga [3|, the initial population is divided into separate
“islands” that are allowed to evolve independently. At fixed
intervals, a percentage of the population on each island "mi-
grates” to another random island. By keeping the popula-
tions separate, each island is able to search a different part
of the search space, with the migration serving to increase
new genetic material to each island which helps to prevent
premature convergence. Since these populations evolve inde-
pendently and only need to interact during the migrations,
each island can be run on its own processor.

Within each island, Eureqa uses age-fitness Pareto [10]
as a second method for preventing premature convergence.

In this method, a single-objective problem (e.g. error mini-
mization) is turned into a multi-objective problem by adding
the age of the genetic material as a second objective to be
optimized. This is done by by giving all genetic material an
initial age of 1, and during crossover, the children inherit the
age of the oldest parent. The best solution in this problem
will then be the highest fitness solution with the minimum
age.

Using these methods, Eureqa generates a number of so-
lutions, each offering a potential function that explains the
target data by input data. The concept behind this study
is to use symbolic regression to determine the functional
forms relating regions of interest (ROI’s) in an fMRI scan
of a subject performing two different tasks, and also while
no task is being performed. Ideally this method would be
able to find the connections that are already known to exist,
but would also show non-linear connections that the GLM
cannot account for.

3. EXPERIMENTS

The main outcome for this project was the creation of a
methodology for using Eureqa to analyze the fMRI data.
This section focuses on procedure used to analyze the two
different data sets. In the first, fMRI data from a subject
performing two different tasks is analyzed using Eureqa to
determine if known connections within the brain can be de-
termined using symbolic regression. In the second, the con-
nections between known networks in resting state data are
analyzed.

In the first task of the first data set, the subject is asked to
watch a blinking checkerboard (called a visual metronome)
and tap their finger continuously. In the second task, the
subject again watches the visual metronome and taps their
fingers, but this time they are asked to count to five and
then stop tapping, take a short break, and then repeat. This
counting leads to different regions of the brain being active.
The fMRI data for the two different tasks, labeled test 1
and test 2 (where the authors do not know which includes
counting), has been parsed to 17 regions of interest, labeled
1 through x17. These regions are known to contain some
areas that are expected to show increased activity during the
tasks, as well as some regions that are just noise. For each
of these regions there is a time series of 159 data points, col-
lected in 2 second intervals. To find the relationship between
each region, each time series was modeled as a function of the
other 16 time series (i.e 1 = f(x2,x3...x17)). The relevant
parameters for each of these runs is summarized in Table
The operator set includes the basic arithmetic operators, ba-
sic trigonometric functions and real valued constants. Each
time series was run for 8 core hours using RMSE as the
target for minimization.

The resting state data contains 52 regions that are known
to be part of 17 different networks. Figure [2| shows one of
these networks that contains four regions, which appear as
the red regions highlighted on the brain image at the bottom
of the figure. Using a methodology similar to that presented
previously, one region from each of the 17 networks is run
as a function of the other 51 regions and the resulting func-
tional forms are saved. For networks that contain multiple
regions, a second run is done with the regions found in the
first run eliminated. By eliminating the regions that are
highest fitness, Eureqa is able to find other regions that are
less correlated.
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Visualization of the resting state data analyzed in this study. The image at the top of the figure

is a sample of Eureqa output as a network of correlated resting state regions is run.

Table 1: Summary of Experimental Setup

Solution Population Size

Selection Method
Parallelization Method
P(mutation)
P(crossover)

Solution Encoding
Operator Set
Terminal Set
Crossover
Mutation

Run Time
Training Data
Validation Data
Error Minimization

512
Age-Fitness Pareto
Island Model
.015625
5

Operation List (graph)
+, —, %, /,sin, cos, const
T1-217
single point
single point

8 core hours
100 data points
59 data points

RMSE

For each run, Eureqa generates an accuracy-parsimony

Pareto front of potential solutions. To find the most likely
relationships between regions, the top 5 solutions on this
Pareto front were selected as candidate functions. Within
these candidate functions, the most frequently occurring re-
gions were determined. Finally, the candidate function with
the lowest (most optimal) fitness that contained all of the
most frequent regions, and only those regions, was selected
as the functional form for that data point.

As an example, the candidate functions for the z; region
of test 1 are shown in Figure[3] In these candidate functions,
the regions x> and x4 are the most frequently occurring re-
gions. The candidate function with the highest fitness that

contains both of these regions, and only these regions, is the
second function on the list. In this example, the functional
form is a linear combination of the two points, but this is
not the case for all the functional forms, a point which will
be explored more in the results section.

4. RESULTS AND DISCUSSION

The evolutionary technique for analysis of fMRI BOLD
signals was applied to two data sets. The first comes from
the single-subject experiment in which the participant was
asked to perform finger-tapping tasks described earlier in the
paper, and the second comes from a subject who was given
no task or stimulus. We present and discuss the results of the
analyses in the Finger Tapping and Resting State sections,
respectively.

4.1 Finger tapping

The functional form selected for each region of interest
(ROI), as described in the previous section, indicates three
things: (1) what other regions are depended upon by the
ROI, (2) the nature of the dependence (linear or nonlinear)
for each region on which the ROI depends, and (3) a measure
of our confidence in the dependence, as represented by the
fitness of the selected functional form. These results are
displayed graphically in Figure [4| for test 1, (top panel), and
test 2 (bottom panel).

As an informal proof of concept (or suggestion of mean-
ingfulness), the results pictured in Figure {4| were used in
an attempt to determine (1) which regions were activated
during each task; and (2) which of test 1 or test 2 involved
counting in addition to finger-tapping. Inferences were made
blind, (without knowledge of the physical locations of the re-
gions), and then verified afterward by the experimenter who
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Figure 3: Sample of top 5 candidate functions for the z; region for Test 1
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Figure 4: Results for (a) test 1 and (b) test 2. Re-
gions for which functional forms were determined
are on the vertical axis, and nonzero elements indi-
cate dependence on the corresponding region on the
horizontal axis. Fitness is color magnitude, where
fitness has been scaled to [0,1] and 1 is best. The
sign of the color indicates the nature of the depen-
dence, positive for linear and negative for nonlinear.
For example, the first row for test 1 can be read as 1
is a linear combination of z3 and z4, with confidence
approximately 0.7.

collected the data. The following paragraphs summarize the
inferences and reasoning behind them.

Based on the idea that regions activating in response to a
stimulus should have codependent BOLD signals, the sym-
metric block of high fitness codependence among regions
1—5 present in both test 1 and test 2 suggests that they are
activated in both tasks. This leads to the conclusion that
they represent visual and/or motor response centers, which
are expected to be active in both tests. Likewise, the poor
fitness for regions 6 — 9 in both tests suggests that these
regions are unrelated to either task. Regions 15 — 17 are
likely inactive in test 1, but the fact that there is some high
fitness dependence on these regions in test 2 suggests that
they may be active for test 2.

The generally higher activity and fitness in test 2, indi-
cated by more colored points and darker colors, respectively,
suggest that this is the task that includes counting. Further
supporting this conclusion, regions 10, 12, and 15 also show
dependence on the regions we have concluded are visual or
motor areas, suggesting that in test 2 some other task (like
counting) has become linked with the visual or motor re-
sponse. The fitness of functional forms for these regions is
somewhat low, however, so we call this inference “uncertain”.

It is hard to say anything about regions 11, 13 or 14.
These regions may be active in both tasks, as their func-
tional forms have reasonable fitness in each case. Again,
there is some high fitness dependence on 11, and 14, par-
ticularly for test 2. For all 3 regions, we note that the de-
pendence changes markedly from test 1 to test 2, but don’t
infer anything based on this observation.

Table [2] gives the names and and related functions of the
17 regions, along with their expected activity during the two
tasks, as provided by the experimenter. The last column is
a summary of the inferences made blindly by the authors,
based on Figure[d] as described in the previous paragraphs.
The inferences line up fairly well with the expected activity
of the regions. Furthermore, the two regions that should
best distinguish between tasks, (regions 10 and 15), were
both regions that became dependent on the visual and motor
control centers in test 2, and thus the inference that this was
the counting task was not only correct, but also suggests that
the proposed methodology does in fact uncover interactions
between regions of the brain. Also, since region 10 interacts
nonlinearly with regions 2-4, (and 11), it is unclear whether
or not this relationship would be picked up by the GLM.

4.2 Resting state

As shown in the finger tapping experiments, Eureqa is
able to successfully identify some regions that are active in
response to a known stimulus. As a second check of the
ability of this method to provide meaningful results, rest-
ing state data is analyzed by seeking functional forms for



Table 2: 17 regions by name, showing related function, expected activity, and inferred activity.

Region name

Related function(s)

Expected activity

Inferred activity

Occipital Lobe

Primary and Supplementary Motor
Right Insula

Left Cerebellum

Left Insula

visual response
motor control
motor control
motor control
motor control

Left Frontal Lobe

Right Hippocampus

Anterior Cingulate Cortex

Left Temporal Lobe

10 Right Dorsolateral Prefrontal Cortex
11  Left Temporoparietal Junction
12 Right Putamen

13  Left Temporoparietal Junction
14 Right Temporoparietal Junction
15 Right Inferior Frontal Gyrus

16  Right Occipital Lobe

17  Left Putamen

none related
none related
none related
none related

@OO\]@U‘%W[\J»—':H:

motor planning

self-other distinction

motor learning, prep., sequences
self-other distinction

self-other distinction

go/mo go tasks

visual response

motor learning, prep., sequences

both tasks both
both tasks both
both tasks both
both tasks both
both tasks both
neither task neither
neither task neither
neither task neither
neither task neither

more with counting
minor in both tasks
both tasks

minor in both tasks
minor in both tasks
more with counting

test 2 (uncertain)
both (uncertain)
test 2 (uncertain)
both (uncertain)
both (uncertain)
test 2 (uncertain)

one region from each of 17 networks (small groups of re-
gions known to co-activate). Since the subject is not being
presented with a stimulus, it can be challenging to regress
the regions that are active using the GLM. With Eureqa,
the regions that are in the same network should show up as
part of the same functional form. Regions that are in the
same network are numbered sequentially, and a functional
form is sought for the first region of each network. In Figure
there is a clear trend of highly fit regions appearing just
above the diagonal. In addition, there exist a number of
out-of-network connections. As in the finger tapping exper-
iments, the functional forms that Eureqa produced include
linear and non-linear terms.

Eureqa was able to find at least one other region within the
network for many of the 17 networks analyzed. For each of
the larger networks, Eureqa is able to find multiple points
within the network, either during the first or second run.
Further refinement of each region beyond the initial point in
the network, as well as re-running each point to find all of the
connections would fill out the image. Generating these plots
for a number of patients should demonstrate if the secondary
networks that Eureqa is identifying are meaningful.

S.  CONCLUSIONS

The main deliverable for this work is a methodology for
using an evolutionary technique to (1) discover interactions
between regions of the brain; and (2) describe the nature of
those interactions qualitatively, as either linear or nonlinear.
This study was exploratory in nature, and thus the results
presented here are meant to suggest the potential of the
methodology. No claim can yet be made about the validity
of the results, or even the methodology itself. The next step
of this work is, naturally, to pursue a rigorous validation by
applying the technique to data from many subjects.

Even given the exploratory nature of the work accom-
plished so far, however, the authors are very encouraged by
the suggested potential of the method! In the finger tapping
analysis, with very little domain knowledge and no details
about which locations of the brain the data came from, we
were able to (1) give a reasonably accurate account of which

both tasks test 2 (uncertain)
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Figure 5: Results for Resting State data. Regions
in the same network are numbered consecutively, so
the highly fit correlations just above the diagonal
show Eureqa’s ability to detect these connections.

regions were active in each task; (2) classify which of the
tasks was being performed; and (3) describe the interac-
tions between regions that led us from (1) to (2), including
nonlinear interactions that may be difficult to detect using
current methods. Furthermore, in the case of the resting
state analysis, the method discovered expected interactions
among networked regions of the brain (giving further cre-
dence to the validity of the technique), and uncovered un-
expected inter-network relationships that may provide new
information to domain specialists, provided they can be val-
idated across subjects.

Tackling the seemingly infinite complexity of the human
brain requires techniques well-suited to such complexity. The
ever-growing store of neuroimaging data begs for large-scale
analysis, and the developing tools of evolutionary computa-
tion were born, one might say, to perform just this type of
analysis. Upon validation of the method proposed here, we
hope that it may provide new useful information to domain
specialists, not only for a better general understanding of the
brain, but also potentially for the diagnosis and treatment



of neurological disorder.
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