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A 3-Dimensional Model of a “Toy Climate” Convection Loop

Natural convection in the atmosphere is
fundamental to the weather patterns we
observe every day. The process can be
isolated for study by filling a hula-hoop
shaped loop with fluid, and then heating
(cooling) the bottom (top) half to create a
temperature inversion (Left) [1]. A high-
dimensional CFD simulation of such a
loop was generated to represent a “toy
climate”, for which we attempt to make
forecasts with a 3-dimensional model.

(Right) System of ODEs
developed by Lorenz to model
convection [2], and (Left) a
visualization of the chaotic
attractor of the system. Unstable
convective equilibria are located at
the centers of the two lobes, rep-
resenting clockwise and counter-
clockwise flow. A qualitatively
identical system was used as the
forecast model for this study.

ẋ1 = σ(x2 − x1)
ẋ2 = ρx1 − x2 − x1x3
ẋ3 = x1x2 − βx3

I x1 ∝ flow velocity
I x2 ∝ temperature difference

across tube
I x3 ∝ deviation of the convecting

temperature profile from that of
conduction (linear)

I β v tube geometry
I σ = Prandtl number
I ρ = Rayleigh number

Learning from the Past: Empirical Correction of the Forecast Model
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Model accuracy can be improved by comparing short model forecasts to the true (or best

estimate) system state over a training period. Effectively, by analyzing the “past mistakes” of the

model, the error in future forecasts can be reduced. (Above) The direct insertion procedure

for comparing short model forecasts to the truth. xT represents a vector time series of the

reference truth, and the analysis window h is the number of timesteps between estimations of

the true system state. xM represents a vector time series of forecasts with duration equal to the

analysis window, each of which is started from the previous true state. The time-average of the

analysis corrections 〈∆x〉 divided by the analysis window h approximates the model bias b,

which is independent of system state. A model correction Lx that depends on the system state

x can further improve accuracy. The correction operator L is computed by L ≡ C∆xxT C−1
xT xT , the

product of the cross-covariance C∆xxT between the analysis corrections and the reference truth,

and the inverse of the true state covariance C−1
xT xT [3, 4]. The model is adjusted by adding the

bias term b and the state-dependent correction Lx to the model prediction at every timestep.

To test the effectiveness of empirical correction, 1000 trial forecasts were

performed starting from randomly selected, independent initial states after the

training period. (Below) One particularly positive outcome. Trajectories of the

true system (black), uncorrected model (blue) and corrected model (red) all starting

from the same initial state (black circle). The corrected model remains close to the

truth for far longer than the uncorrected model. (Right) Average error statistics

over the 1000 trials. (top) A forecast is generally considered useful for as long as its

anomaly correlation (AC) remains above 0.6 [5]. Empirical correction increases the

average duration of usefulness by approximately 30%. (bottom) Average error in

predicted fluid velocity x1, taken relative to the natural variability of the system.
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Anomaly correlation (Top) and flow-rate relative error

(Bottom) over 1000 independent trials, for the

uncorrected model (solid blue), and corrected models with

parameters untuned (black) and optimally tuned (red).

Corrected models show reduced error. Additionally, the

small difference in performance between corrected models

with tuned vs. untuned parameters suggests that empirical

correction can overcome parameter inaccuracy.

Incorporating System-Specific Dynamical Knowledge into the Correction Procedure

(A) corrected (B) LD corrected

(C) ED corrected (D) LD−ED corrected
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Improved error statistics hide some important dynamical consequences of empirical correction, including

broken symmetry and altered stability of equilibrium solutions. (Above) Difference (in minutes) between

predicted and actual time of first regime change (flow-reversal), taken tmodel − tactual, and plotted by initial

state, for the (A) corrected, (B) lobe-dependent corrected, (C) equilibrium-dependent, and (D) lobe and

equilibrium-dependent corrected models. The green dots show good predictions, while the red dots show

initial states in the basins of the spuriously stable convective equilibria, (inset histograms show frequency of

each). The lobe and equilibrium dependent corrected model is the best dynamical match to the truth.

The general empirical correction procedure can be tailored to take

advantage of system-specific dynamical knowledge. The present

system, for example, is known to have two distinct regimes

characterized by opposite directions of flow in the tube, (corresponding

to the left and right lobes in state-space). (Right) Computing a

different bias term b and operator L for each regime, and applying them

appropriately in a forecast scenario, results in further error reduction.

Results are also shown for corrected models incorporating knowledge

of distance from equilibrium (from the centers of the lobes), and models

incorporating both types of dynamical knowledge. Another reason to

adapt the correction procedure: (Below) A corrected model gone

wrong. Empirical correction has altered the stability of the convective

equilibria, which now attract nearby states in contrast with the true

system. See (Left) for a discussion of this unfortunate consequence.
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Anomaly correlation (Top) and flow-rate relative error

(Bottom) over 5000 trials, for the uncorrected model

(solid blue), and models corrected without dynamical

knowlege, with knowlege of lobe (LD), distance from

equilibrium (ED), and both (LD-ED). The best performing

model incorporated flow direction (lobe) only (solid red),

where forecasts are useful for about 80% longer than those

made by the uncorrected model, more than doubling the

improvement made by dynamically uninformed correction.
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