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Abstract

The field of neuroimaging has truly become data rich, and as such, novel analytical
methods capable of gleaning meaningful information from large stores of imaging
data are in high demand. Those methods which might also be applicable on the
level of individual subjects, and thus potentially useful clinically, are of special
interest. In the present study we introduce just such a method, called data-driven
dynamic mapping (3DM), and demonstrate its application in the analysis of resting
state fMRI (functional Magnetic Resonance Imaging) from a 242-subject subset of
the IMAGEN project, a European study of risk-taking behavior in adolescents that
includes longitudinal phenotypic, behavioral, genetic, and neuroimaging data.
Dynamic mapping employs a computational technique inspired by biological
evolution to discover and mathematically characterize interactions among ROI
(regions of interest), without making linear or univariate assumptions. Statistics of
the resulting interaction relationships comport with recent independent work,
constituting a preliminary cross-validation. Furthermore, nonlinear terms are
ubiquitous in the models generated by 3DM, suggesting that some of the
interactions characterized here are not discoverable by standard linear methods of
analysis. We uncover one such interaction that shows potential for distinguishing
between drinking and non-drinking adolescents.

Data from regions of interest (ROI)

Each of the 52 ROI chosen for this study consists of a sphere of 100 voxels, (radius
3 voxels ≈ 1cm). The data come from 6-minute fMRI scans of 242 adolescents
who were asked to to keep their eyes open while in the scanner, but were
presented with no task or stimulus. Resting-state scans pose a challenge to
standard fMRI analysis techniques, which typically involve regression of the BOLD
signal (fMRI contrast is Blood Oxygen Level Dependent) in terms of a stimulus or
task signal. Here we introduce a methodology that bypasses this challenge by
regressing the signal from a particular ROI against the signal from all other ROI,
and additionally avoids the linear and univariate assumptions typically made in
standard approaches.

Locations of the ROI were chosen based
on work by Laird et al. in 2011, in which
statistical analysis across thousands of
imaging studies identified networks of ROI
that activate together. (Left) z-statistic plot
(green) derived from ICA (independent
component analysis) and corresponding
ROI selected for this study (red) for one
network called the default mode network
(DMN), which shows damped activity (with
respect to resting state) when a subject is
presented a stimulus or performing a task.

Recent work from Laird et al.

Laird et al., 2011. Behavioral interpretations of intrinsic connectivity networks. J. Cog. Neuro.

(Left) In Laird et al. (2011), 20 ICN (intrinsic connectivity networks) were defined by
ICA across the BrainMap database. (Right) HCA (hierarchical cluster analysis) of
associated metadata allowed a functional behavioral characterization of the
networks. The methodology we introduce reproduces most of the non-artifactual
ICN, may extend the above hierarchy, and shows potential for identifying phenotypic
variation.

Genetic Programming (GP)

GP is a population based optimization algorithm that searches for equations
explaining observations of a particular variable (BOLD signal from an ROI in the
brain) as a function of some other observed variable(s) (BOLD signals from other
ROI). Symbolic regression is performed, whereby the only assumption made on the
form of the models is the set of mathematical building blocks from which they can
be constructed, (arithmetic operations in the present work). RMS error was the
quantity subject to optimization in this study. An important aspect of GP illustrated
in the figure is that the result of a single search is a whole set of potential models
along the Pareto front of accuracy vs. parsimony. This is useful for a number of
reasons, and in particular, provides a trove of information for statistical analysis that
would be lost by the choice of a single model. (Below) A schematic of the GP
algorithm.
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Applying GP to fMRI

To apply GP to the fMRI data, for each of the 242 subjects we extract BOLD signal
time series from the 52 selected ROI, and regress each ROI in terms of the others.
Note that the algorithm has no knowledge of the networks themselves, but acts on
data extracted from regions that come from within these networks. Over 17 total
core-years of computation performed on the Vermont Advanced Computing Core
(10 days real-time) provide roughly 12 thousand Pareto fronts comprised of a total
of about a quarter million models for statistical analysis.

(Above) Screen shot of the GP package Eureqa during a search for models of the
activity in ROI 9 as a function of activity in the other 51 regions. (Top left) the
current set of potential models along the Pareto front of accuracy vs. parsimony
(bottom right), each dot a model, red dot the highlighted model. (Top right) data
from ROI 9 (dots) over the 6-minute scan of one of the subjects, with the
highlighted model (red line), and (bottom left) statistics for the model fit.
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IR map over all 52 ROI and 242 subjects
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RSD of IR, 100 subsamples, 100 subjects each

For each ROI we count the number of models, across all 242 subjects, that have
terms with a particular (other) region, and then do this for each other region. After
normalizing, the result is a vector for each ROI that summarizes its dependence on
other regions. We interpret this vector as a distribution of likely interaction and
define the computed values to be interaction rates (IR). (Left) An interaction map is
formed by stacking these IR row vectors. Subsampling is then used to test
robustness. For each sample we perform the same counting procedure to produce
a corresponding interaction map. (Right) A heat map of RSD (relative standard
deviation) of IR over 100 subsamples of 100 subjects each (with replacement).

Block-diagonal structure in the IR map corresponds to grouping of ROI into ICN,
emphasized by solid outlines. For example, ROI 39-42 make up the DMN. Intra-
network IR robustness is supported by matching block-diagonal structure of low
subsampling RSD (< 15%). A secondary block structure groups ICN, emphasized
by dashed outlines. Consider regions 32-38, composing ICN 10, 11 and 12. A
lighter block structure suggests interaction among these ICN, which together
execute visual processing. Secondary structure for regions 19-31 comprises ICN
6-9, which perform motor and visuospatial tasks. Matching structure of moderate
subsampling RSD (15% < RSD < 25%) indicates robust inter-network interaction.

Hierarchical Cluster Analysis (HCA)
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(Above) Dendrogram illustrating HCA of interaction among ROI. The distance
between regions is the reciprocal of IR between them, e.g. regions with an IR of
0.2 between them (ROI 1,2) have an interaction distance of 5. The organization of
ROI into ICN, and ICN into functional groups is apparent. Also note the following:
I The orange group to the far left includes all but one of the ROI from ICN 6-9, the

motor and visuospatial complex. Indicated are interactions with the anterior
cingulate gyrus (ROI 9) and ICN 15 (ROI 46,47), thought to be responsible for
multiple cognitive processes such as attention and inhibition.

ICN 10 (red); ICN 11 (blue); ROI 36 (green).

I Regions 39-42, the left green
group, form ICN 13, the DMN, and
show interaction with ROI 4, the
orbitofrontal cortex, from ICN 2.

I The red group to the far right forms
the visual cluster composed of ICN
10, 11, and 12. (Left) ICN 10 (ROI
32,33) consists of the middle and
inferior temporal gyri, while ICN 11
(ROI 34,35) and ICN 12 (ROI
36-38) are the lateral and medial
posterior occipital cortices,
including V1, V2, and V3. Note the
apparently stronger interaction
between ICN 11,12.

Phenotypic variation

Statistics of IR among ROI may differ between phenotypic groups. The hierarchical
organization of ROI induced by IR might ilumminate, in such cases, variation in
functional dynamics associated with demographic, behavioral, or genetic
characteristics. An example illustrating this potential is provided by the contrast
between drinking and non-drinking adolescents from the IMAGEN dataset.
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(Above) Interaction hierarchies for (top) 100 non-drinking adolescents (NDA), 1 or
fewer lifetime drinks, and (bottom) 100 drinking adolescents (DA), 2 or more
lifetime drinks. The NDA hierarchy appears strikingly similar to the population-level
hierarchy, but there are subtle differences, a notable one being the weaker
interaction within the DMN. In contrast, the DA hierarchy is more clearly different at
large and small scales. Observe the following:
I In addition to the decreased intra-DMN IR in the NDA hierarchy, there is

increased IR between the DMN and the ROI pair 3-18, the subgenual ACC
(reward and thirst tasks) and midbrain (interoceptive stimulation), for the NDA.

Ventromedial prefrontal cortex from the DMN
(red), and posterior cingulate (larger green)

I For the DA group, the ROI pair
3-18 interacts with ICN 3, the
bilateral BG and thalamus, regions
linked most strongly to reward
tasks, and interoceptive processes
such as hunger and thirst.

I At the larger scale, the top level of
the DA hierarchy is missing, due to
the visual centers becoming more
coupled with other ICN.

I (Left) The largest single difference
between the DA and NDA groups
is the IR between the ventromedial
prefrontal cortex (in the DMN) and
ROI 11, the posterior cingulate.
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