
QS EZFract 2015 Help 
 
 “The computer is looked upon as a diabolical instrument by many, scientists no less than artists 
and worried parents. Some, after a brief glance at the machine, find themselves completely 
addicted.” 
 H.-O. Peitgen et al. - The Beauty of Fractals, p. 3 
 
“Chaos Wipes Out Every Computer” 
  H.-O. Peitgen et al. - Chaos and Fractals, Chapter 1.5 title 
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1. Introduction 
 

 

 
QS EZFract 2015 builds upon my 
early programs QSWFract from 
1996 and EZFract from 1997, 
which started as a simple template 
upon which to add code for various 
fractals and algorithms. I was 
motivated to undertake this project 
while I was learning to apply 
coloring methods in Mathematica 
to various objects, including 
Mandelbrot sets. This led to the 
resurrection of some of the original 
EZFract coloring methods, and to 
revisiting Jeff Field's program 
EZ33. It struck me that it could be 
entertaining and even educational 
to revise EZFract for the new 
millennium. 



 
 
 
Unlike QSWFract, EZFract only draws Mandelbrot and Julia sets, and is limited to true color 
graphics modes. Although its scope is more focused, it introduces some new and hopefully 
useful features. Up to 50 parameter changes for each fractal type are saved, so that backing out 
of a zoom or returning to a previous image is possible. You can click anywhere on a 
Mandelbrot image to see a thumbnail of the associated Julia set, and then render it if you wish. 
You can bring up a Mandelbrot set that will animate the orbits of individual starting points that 
you click on. You can trace external rays over any image. And at least some inefficient code 
has been revised. There is no scrolling, because coding it is a tedious hassle, and it's really not 
necessary. You can work on an image that fits inside your window, and when it's ready, render 
it in any size you wish. Since this is done to a virtual screen, the size is limited only by your 
computer's  memory. The TARGA saving routine works from this virtual screen. So 
WYSINWYG. 
 
This program is dedicated to my fellow Fractaliers - Fausto Barbuto, Dave Dobbs and Jeff Field 
- as we forge ahead into our third decade. 
 
I also would like to acknowledge: 
 
Gaston Julia, Pierre Fatou, Benoit Mandelbrot, Adrien Douady and John H. Hubbard: giants 
whose shoulders we stand on. 
 
the Stone Soup Group, creators of Fractint, especially Tim Wegner, who corresponded with me 
at length and welcomed my input to the program. 
 
Heinz-Otto Peitgen, P.H. Richter, Hartmut Jurgens and Dietmar Saupe from Bremen, Germany, 
who gave mathematical legitimacy to the art of fractals long before the emergence of fractal 
artistes. The titles of their books say it all: The Beauty of Fractals, The Science of Fractal 

Images, Chaos and Fractals.  

 
Wolf Jung, a mathematics teacher in Aachen, Germany, who created the Mandel program, 
which is dedicated to exploring the mathematical intricacies of Mandelbrot and Julia sets. The 
source code was instrumental in my eventual success in coding external angles and external 
rays. His Web site is: 
 http://www.mndynamics.com 
 
Adam Majewski, whose Maxima code helped me to understand various aspects of fractals  
including application of the inverse iteration method for tracing external rays. Unfortunately, 
this method only works in the dynamic plane (Julia sets) and not in the parameter plane 
(Mandelbrot sets), so I didn't end up using it. His Web site is: 
  http://fraktal.republika.pl 
 
Robert Devaney, whose  book Chaos, Fractals and Dynamics - Computer Experiments in 

Mathematics describes in simple terms, on pages 111 and 123, how to use the boundary 



scanning technique to draw the borders of M- and J-sets (and thus to approximate equipotential 
lines). He also describes how to use the polar coordinate system to calculate the square root of a 
complex number in The Science of Fractal Images, pages 152-3. 
 
Cliff Pickover, whose multiple and often fanciful books have added significantly to the realm of 
fractal art and science, and who created the “biomorph” and “epsilon cross” coloring schemes 
that appear in this program. 
 
Damien Jones and Kerry Mitchell, who were early participants in both the mathematics and the 
art of fractals, and who eventually contributed to UltraFractal. Some of their UF scripts were 
helpful with such topics as smoothing routines and triangle inequality averaging. 
 

2. Using the Program 
 
The menu commands should be largely intuitive, except for Options → Coloring → Method 
(see below) and Options → External Rays (Section 8). Here is a summary of various features. 
Additional information on program use will be found in Section 3 (Special Keys). 
 
Status bar: The status bar at the bottom of the window is divided into two parts. The left part 
shows the coordinates of the mouse cursor over the image, in actual image values (not pixels). 
Just like a standard graph (and not like computer screen coordinates), the y values are low at the 
bottom and high at the top. 
  The right part shows various types of information. By default it shows the position of 
the current image in the history list, e.g. “Current M-set: 7 / 50”. When a zoom box is being 
dragged, it shows the aspect ratio, which is necessary to avoid distorting the image (see 
Zooming below). When a Julia thumbnail is being displayed, it shows the value of the cx and 
cy points. 
 
Palettes consist of 256 RGB colors each, to allow for the use of Fractint MAP files, easily-
editable text files, which can be loaded from the Options → Palette menu. The program starts 
with a default palette, derived from QSEZF.map, which can  be reset from the menu. 
Additionally, a linear greyscale palette can be loaded from the menu. 
 
Zooming: In typical fashion, the zoom box is formed by depressing the left mouse button and 
dragging. Watch the right part of the status bar, which shows the aspect ratio of the zoom box, 
to make sure the zoomed image is not distorted. The aspect ratio should be maintained as xres / 

yres. The program starts out with a default ratio of 1:1, but this can be changed by entering 
different values in the Options → Parameters dialog box. 
 Release the left button to complete the zoom box. If you're satisfied, press Z to render 
the image. You'll see that its position in the current history is updated in the right part of the 
status bar. If you're not satisfied, press X to erase the zoom box. 
 
History: The program saves up to 50 parameter sets for both Mandelbrot and Julia images. But 
it does not save each coloring change within the same parameters. To go back to previous 
images, press Backspace. To go forward, press Space. You can follow the order of the images 
in the right part of the status bar. To reset the history of the active fractal type, deleting the 



currently-stored images, press R. As noted above, the right part of the status bar displays the 
position of the current image in the history list in the form: “Current [M | J]-set: X / 50”. 
 
Julia sets: When a Mandelbrot image is displayed, you can right-click anywhere on the image 
to display a thumbnail image of the associated Julia set at the upper left corner of the window. 
Its values for cx and cy will be displayed in the right part of the status bar. If you wish to render 
the image, press J. To remove the thumbnail, right-click again anywhere. You can display and 
erase as many thumbnails as you want. I saw this done first in Fractint, and it's also done in 
Mandel. I've always wanted to reproduce it. 
 
Options → Coloring → Method: There are two choices for this menu item. Image yields a 
standard image. Height Field yields a greyscale image that can be used as a height field by a 3-
dimensional rendering program such as POV-Ray. Dark areas are interpreted as low along the 
z-axis, and light colors are high. This option works especially well with the Continuous 

Potential outside coloring option. 
 
Orbit-tracing mode: This is another idea from Fractint that I've expanded upon. To enter the 
mode, press O. A full Mandelbrot image will be drawn. By right-clicking anywhere on the 
image, either inside or outside the M-set, the orbit of the corresponding point will be animated 
as successive points connected by line segments as iteration progresses. Various interesting 
patterns emerge, especially for points within the M-set, including spiral arms that are formed 
periodically. Tracing orbits from within buds will reveal their periods. To exit from the mode, 
press O again. The default line-drawing mode can be toggled off and on by pressing K. Menu 
options are limited, but you can change xres, yres and maxiter via Options → Parameters. 
 
Escher-Julia mode: This tangential and somewhat esoteric mode appears in Peitgen's  chapter 
in The Science of Fractal Images on pages 185 and 187. A unit-circle Julia set (z = z²) is 
iterated, and points are tested to see if they are contained in a second, “target” Julia set (z = z² + 
c). As Peitgen writes, “This method opens a simple [sic] and systematic approach to Escher-like 
tilings.” I've included it because it's interesting and unique and I was able to figure out how to 
code it. I was pleased to have it incorporated into Fractint. 
  To enter the mode, press E. Menu options are limited, but you can change xres,  yres 
and maxiter via Options → Parameters. You also can change the target set with the cx and  cy 
parameters. You also can use Options → Palette to change the color palette. To exit from the 
mode, press E again. 
 
Inversion mode: Based on polar coordinates, this mode transforms an image by mapping each 
point to be iterated to a corresponding position along its argument (angle), on the opposite side 
of a given point designated the “radius”. Typically, the radius is 1.0; using a different radius has 
a scaling effect. So, a point at (0.5, π / 4) will become (2.0, π / 4) and a point at (4.0, π / 3) will 
become (0.25, π / 3). 
  The result is an image with the M-set or filled J-set on the outside, and the complement 
of the set on the inside, with level sets becoming progressively circular as they surround a tiny 
dot which represents infinity. 
 To enter the mode, press I. This option is disabled for certain coloring methods, such as 
equipotential lines, and the external ray option is disabled. To exit from the mode, press I again. 



3. Special Keys 
 
Accelerator keys are keyboard shortcuts to menu items and are indicated on those menu items. 
They include F1 - F9, Esc, D, G, L, M, P and S. 
 
Further information on the following special keys can be found in Using the Program. 
 
Pause, not surprisingly, pauses the rendering of an image. To resume, click Plot Fractal or 
press F1. 
 
Backspace: Moves back to previously-rendered images. 
 
Space: Moves ahead to previously-rendered images. 
 
E: Enters Escher-Julia mode. To exit from this mode, press E again. 
 
I: Enters inversion mode. To exit from this mode, press I again. 
 
J: Renders a Julia set if the current image is a Mandelbrot set, and a thumbnail has been drawn 
by right-clicking on a point in the image. 
 
K: In orbit-tracing mode, orbiting points are connected by line segments. To toggle this 
option off and on, press K. 
 
O: Enters orbit-tracing mode and draws a full Mandelbrot image. By right-clicking any point 
in the image, the orbit for that point is animated as it is iterated. This can be repeated 
indefinitely. To exit from this mode, press O again.  
 
R: Resets the history of the active fractal type, Mandelbrot or Julia. Currently-stored 
parameters are deleted. 
 
T: In triangle inequality average coloring methods, cycles between the default, Damien 
Jones's and Kerry Mitchell's algorithms, explained in the Triangle Inequality Average section. 
 
X: Cancels a completed zoom box. 
 
Z: Renders the image in a completed zoom box. 
 

4. Outside Coloring Methods 
 
Choosing several of these coloring methods brings up secondary dialog boxes to set method-
specific parameters. To re-open these dialog boxes, re-select the coloring method. Most of these 
methods are affected significantly by the choice of iteration count (maxiter) and bailout value 
(maxsize). The palette also can make a major difference in the appearance of the image. 



Solid Color: The same secondary dialog box is used to set both the outside and inside solid 
colors. But only the selected option - outside or inside - will be applied. 
 
Level Sets: The time-honored outside coloring method. Sequential colors from the palette are 
assigned to points based on how many iterations are required for them to escape. 
 
Smoothing: Level sets are adjusted to form smooth gradients, substituting aesthetics for 
mathematical purity. The basic algorithm for the normalization of the iteration count n is: 
 nn  =  (n + 1) -  [ log(log(size)) - log(log(maxsize)) ] /  log(2.0). 
size is the distance of the escaped point from the origin. Dividing by log(2.0) converts the log 
from base 10 to base 2. 
 
Continuous Potential: This method is exploited by Fractint to produce smooth gradients that 
spread out the palette in a way that produces height field images that work well with 3-
dimensional rendering programs such as POV-Ray. The potential of an escaped point is 
calculated as the log of its size value (its distance from the origin) divided by 2ⁿ, where n is the 
iteration count. This method works best with very large values for maxsize (at least several 
hundred). 
 A necessary parameter called slope should be set in the Options → Parameters dialog 
box. On page 263 of Image Lab, his guide to several classic graphics programs of the 1990's, 
Tim Wegner writes: 
 “Slope ... affects how rapidly the colors change. If this value is too high, you will run 
out of colors and the 'bottom' will be a solid color. If it is too low, the whole range of colors 
will not show.... The best value varies ... - you will have to experiment with values from 200 
and up.” 
 
Equipotential Lines: Douady, Peitgen et al. draw analogies between the level set boundaries 
and External Rays of the “quadratic family” of fractals on the one hand, and electrostatic 
equipotential lines and “field lines” on the other. This option draws a set of approximate 
equipotential lines using a boundary scanning algorithm. These lines represent boundaries 
between level sets, and are always orthogonal to the external rays. 
 An image showing equipotential lines can be plotted, after which one or more sets of 
external rays can be drawn over it, to produce images like the ones found in the Bremen books.  
 A secondary dialog box offers the option of white or dark gradient backgrounds. The 
latter are drawn with a variation of the Field Line Gradient method described below. 
 

Binary Decomposition: This is the classic method showcased in The Beauty of Fractals. Level 
sets are decomposed based on whether the imaginary part of z is positive or negative, which is a 
convenient simplification of whether the angle of the point is <= or > π. Each level set of the 
nth iteration is divided into 2ⁿ “cells”. The pattern is influenced by the choice of the bailout 
value (maxsize). This method provides an easy demonstration of External Rays. To see the 
relationship, set maxsize to 256.0, render a Mandelbrot set and then draw the set of external 
rays with a denominator of 64. 
 

Binary Decomposition: B / W: For purists, a black and white version.  
 



 
 Peitgen Band Decomposition: On pages 851-2 of Chaos and Fractals, Peitgen et al. show 
that bands following external rays can be made by altering the standard binary decomposition 
algorithm so that all escaping points are iterated the same number of times, even if they escape 
with fewer iterations. They call these bands, which cross all level sets, “cells”. This image 
reproduces Figure 14.7, which shows the cells and an alternating color mapping which 
simultaneously makes the level sets more visible. 
 
Field Line Gradients: While it is challenging to draw individual external rays, simply 
calculating the external angle of a given point is easier. This method produces approximately 
radial gradients by coloring pixels according to their external angles expressed in “turns”, 
which are (radians / 2π), ranging from 0 (along the positive x-axis) to 1 (sweeping in a counter-
clockwise direction back to the positive x-axis). 
 A necessary parameter called period controls how many times the gradient is repeated 
in the sweep around the image. This in effect creates “cells” (see Peitgen Band Decomposition 
above) with boundaries along a set of external rays whose denominator is equal to period. This 
value can be set in the Options → Parameters dialog box or in a secondary dialog box which 
is brought up when this coloring method is selected.  
  The secondary dialog box also offers the option of radial  or radial reflected mapping. 
The first option applies the range of the palette from 0 to 255 across each period cell as it 
sweeps around. The second option applies the palette range in reverse below the x-axis, 
resulting in a symmetrical image. 
 For best results, choose an inside color that contrasts with the first color(s) of the 
palette. Otherwise, a “bleeding” effect from inside to outside will obscure the boundary region, 
resulting in a blurry image. 
 
Triangle Inequality Average: This method is described in detail in the separate Triangle 

Inequality Average section. A necessary parameter called bailout should be set in the Options 

→ Parameters dialog box. For the classic pattern, it should be the same as maxsize. Varying 
these two parameters can result in potentially interesting variations in the decomposition. While 
in any TIA mode, pressing T  cycles between the default, Damien Jones's and Kerry Mitchell's 
algorithms, explained in the Triangle Inequality Average section. 
 



Smoothing + TIA and CP + TIA combine these pairs of methods together in layers. 
 
Integer TIA began as a mistake in coding, which, however, resulted in interesting images. I 
recoded it to make it seem like it was intentional. 
 

“Kirlian” Decomposition: A method named by Fausto Barbuto, which sets the colors based on 
sin(zx) - cos(zy) + atan(zy / zx). The method is very sensitive to the bailout value (maxsize).  
 
Pickover Biomorphs: A method created by Cliff Pickover, producing images which might 
appear to some as resembling primitive life forms that could be grown in a computer 
simulation. If either the real part zx or the imaginary part zy of the escaped point is less than the  
bailout value maxsize, the associated pixel is colored differently from the others in the level set. 
 
Species of Origin: An orbit-trapping method that I adapted from an UltraFractal script by 
Mark Townsend. 
 

Cardioid: Another orbit-trapping method that I adapted from an UltraFractal script by Mark 
Townsend. 
 
N + Real: This method colors escaping points by adding their iteration counts to the floor of the 
real part zx of the points. One could substitute the imaginary part zy, or add both, or create other 
variations on this theme. 
 
Distance Estimator: This method is described in The Science of Fractal Images as a means of 
computing the boundaries of Mandelbrot and Julia sets. It is capable of showing the thin 
filaments of the Mandelbrot set, which otherwise could be skipped over, in considerable detail 
by mapping them to pixels. The method is based on the work of John Milnor at the Institute for 
Advanced Study in Princeton. Peitgen approximates Milnor's equation for estimating the 
distance of a point z, which has escaped from the set, to the boundary of the set as: 
 
    | zn+1 |      2 sinh G          log | zk | 
2      log( | z n+1 | ) ,   from        ,    where  G =                  ,   the continuous potential 
    | z'n+1 |          | G' |              2k                              as  ( k        ∞ )    
 
z'n+1 can be calculated as   2 * zn * z'n + 1   during iteration, or afterward, having saved the 
iterated values of zn in a buffer and re-iterating. The results of this method depend on setting a 
suitable threshold value for the distance, with points whose distance is less being considered a 
part of the boundary. Additionally, points which are very close to the boundary can cause an 
overflow while their distance is being calculated, so a suitable overflow limit also should be set. 
The extent of the outline can be affected significantly by adjusting these values. In particular, 
some Julia sets might require a lower threshold and a higher overflow limit than the Mandelbrot 
defaults. 
 
This method also works using the points which do not escape. With similar calculations, the set 
boundaries can be approximated, though with less precision than if the escaped points are used.  
 



This illustration shows boundaries calculated from outside (left) and inside (right) points. With 
inside points, there is more detail with fewer iterations, but the boundary is less accurate. 

 
 
For black and white boundary images, Peitgen assigns each point “c” a value “l(c)”: 0) point 
inside the set;  -1)  point causing overflow;  1) point's distance is less than the threshold; 2) 
escaped point. The boundary can be traced by coloring pixels black if | l(c) | == 1 and white 
otherwise. However, the outside points can be colored by assigning them a value proportionate 
to the ratio of the point's distance to the maximum distance of any point within the image 
window. This of course requires pre-iterating the set to obtain the value of the maximum 
distance. The inside points also can be colored in this way, but a scaling factor is needed to 
spread the colors evenly, and relatively low maximum iteration values should be used. 
 
Outside points colored by the distance estimator method do not follow the typical distributions 
of level sets or continuous potential. Here is a comparison of these methods: 
 

 



 
 
 

 

 

5. Inside Coloring Methods 
 
In this section, “point” typically refers to the position of a point in its orbit at the end of the 
selected iteration cycle, when n has reached maxiter while size remains less than the bailout 
value maxsize. 
 
Solid Color: The same secondary dialog box is used to set both the outside and inside solid 
colors. But only the selected option - outside or inside - will be applied. 
 
ZMag: Points are colored according to the value of size - the distance of the iterated point from 
the origin - at maxiter. 
 
BOF 33/34: These methods were named in Fractint after figures 33 and 34 in The Beauty of 

Fractals, although later versions have changed the names to BOF 60/61, after the pages they 
appear on. BOF 33 colors points according to the closest distance of their orbits to the origin 
until maxiter is reached. BOF 34 colors points according to their iteration numbers when their 
orbits are closest to the origin. See Periods and Buds for a more detailed discussion of this 
method and related concepts.  
 
There are 7 methods based on functions, primarily trigonometric, of zx, zy and size. There is 
nothing specific to say about them except that their names explain how they are applied. 
 
 

 



Triangle Inequality Average: This uses the same algorithms as the Outside Coloring 

Method, but is applied to the regions inside the respective sets. See Triangle Inequality 

Average. 
 
Epsilon Cross: This is another method created by Cliff Pickover. Zooming in reveals why this 
method also is referred to as “Stalks”. Points are evaluated on whether they are closer than a 
minimum value (in this program, 0.01) to either the real or the imaginary axes (hence “cross”). 
They then are colored based on their relative distances to the closer axis. 
 
Angular Decomposition: This method forms a smooth, asymmetrical radial gradient which is 
somewhat analogous to the Field Line Gradients option in Outside Coloring Methods. 
However, the angle that the point makes with the origin, rather than the external argument, is 
used. 
 
Distance Estimator: This method uses the same type of algorithm as the outside coloring 
method. See the description in Outside Coloring Methods for details. 
 

 

 

6. Triangle Inequality Average 
 
TIA is based on the concept that for any triangle, the length of one side must be greater than the 
difference and less than the sum of the other two sides. The triangle in a typical fractal 
calculation can be formed by several different combinations of points. Representative code 
includes the following: 
 
  //----- Initialize before entering nested loops ----- 
  //----- Adapted from Damien Jones's UF routine ----- 
  il = 1.0 / log(2.0); 
  lp = log(log(bailout) / 2.0); 
 
bailout usually is set to the same value as maxsize, though varying it can yield interesting 
images. 
 
  //----- Typical iteration loop for each point/pixel ----- 
  n = 0; zx = zy = size = sum = sum2 = 0.0; 
  while ((size <= maxsize) && (n < maxiter))  
 { 
  x = zx; y = zy; 
   zx = (x + y) * (x - y) + cx; zy = 2.0 * x * y + cy; 
   size = (sqrt(zx * zx + zy * zy)); n++; 
 
   [Insert TIA algorithm before terminating loop]  
 } 
 



 
 
 sum2 = sum; 

 
 
My algorithm uses the right triangle formed 
by the points c and  z(n+1). The value of  
min is abs(dx - dy) and max is dx + dy. The 
side to be evaluated (L), is sqrt(dx * dx + dy 
* dy). The triangle inequality is expressed 
as the ratio (L - min) / (max - min). When 
the iteration loop is terminated, the ratios 
are averaged, and then this average is 
normalized to yield a color index for the 
pixel. In C code, we have, within the 
iteration loop: 

 z_c = sqrt((zx - cx) * (zx - cx) + (zy - cy) * (zy - cy)); 
  min = fabs(fabs((zx - cx)) - fabs((zy - cy))); 
  max = fabs((zx - cx)) + fabs((zy - cy)); 
  if (min == max) sum += 0.5; 
  else sum = sum + (z_c - min) / (max - min); 
 
and then when the loop is terminated: 
 
 if (size > maxsize) 
 { 
  sum = sum / (double)(n); 
   sum2 = sum2 / (double(n - 1); 
   fx = (double)(1.0 + il * lp – il * log(log(sqrt(size)))); 
   if (fx < 0.0) fx = 0.0; 
   index = sum2 + (sum - sum2) * fx; 
  color = (int)(index * 256.0); 
 } 
 
In the (originally inadvertent) integer form of this algorithm, the hypotenuse of the triangle and 
the values of min and max are calculated from the integer values of the base and side. The color 
is calculated without using fx or index: 
 
  color = ((int)((double)(n + 255) * 
 (sum2 + (sum - sum2)))) % 255 + 1; 
 
 
 
 

 



 

Kerry Mitchell's algorithm from 
UltraFractal evaluates the size of 
z(n+1) (which is represented by the size 
variable in the code). min and max are 
calculated from the sizes of z(n) (which is 
represented by x and y in the code) and c. 

 
 

 

Damien Jones's algorithm from 
UltraFractal uses the triangle formed by c, 
z(n+1) and the origin. The side to be 
evaluated is the length from c to z(n+1). 
min and max are calculated from the sizes 
of z(n+1) (size) and c.

 
One feature of the last 2 algorithms is that they require large values for maxsize and bailout, in 
the order of 1 million or more, to yield the characteristic image patterns. Smaller values yield 
pleasing “precursor” images. Using different values for each parameter causes different scaling 
within each level set, yielding a form of binary decomposition image. 
 
In the program, you can cycle between the default, Damien Jones's and Kerry Mitchell's 
algorithms by pressing T when you are using one of the TIA methods. With Damien's and 
Kerry's algorithms, you can raise the values of maxsize and bailout as high as 1e+16 before 
artifacts begin to appear. When applied as an Inside Coloring Method, this method is 
incompatible with the Species of Origin and Cardioid Outside Coloring Methods. 
 

 

 



7. Periods and Buds 
 
As stated in Inside Coloring Methods,}, the BOF 34 method colors points in the Mandelbrot 
set and filled Julia sets according to their iteration numbers when their orbits are closest to the 
origin. In the Mandelbrot set, the result is a group of regions, or “domains”, each of which is 
associated with a bud that has the same period as the region's iteration index. (See the second 
image below.) 
 

 
 
The term “periodic” refers to a cycle of alternating states, which eventually returns to the 
original state; the “period” is the number of such states per cycle. If a number of states are 
visited before the periodic cycle is entered, the system is called “pre-periodic”. In fractals, an  
iterating point can continue in its orbit cycle or escape to infinity. Each of the infinite number 
of buds in the Mandelbrot set has a characteristic period. The orbit-tracing mode, described in 
Using the Program, can reveal the period of individual buds. The above image shows orbits of 
points with periods of 3 and 5, starting at their respective buds, which are indicated by the red 
arrows. (See the next paragraph for the summation rule.)   
 



 
In the above image, note that the index of each region (domain) is the sum of the indices of its 
two flanking regions. Thus, Peitgen and Richter's observation follows that the series of indices 
“introduces a Fibonacci partition”, which I've indicated on the image by the white line starting 
at the origin and proceeding through the regions for indices 1 through 21. The basic pattern of 
regions and indices observed in the main cardioid is repeated in each bud, but the intervals 
between matching regions are multiplied by the value of the period. In more general terms, 
describing buds rather than the regions of a specific coloring scheme, Peitgen et al. state that 
“Two given buds of periods  p and q at the cardioid determine the period of the largest bud in 
between them as  p + q. Similar rules are true for the buds on buds.” (Chaos and Fractals, p. 
866)  
 

8. External Rays and Related Concepts 
 
 “Irritating ... or motivating; after all mathematicians live on problems more than on answers.” 
 Adrien Douady - The Beauty of Fractals, p.167 
 
Douady and his former student John H. Hubbard were early pioneers in the study of fractal 
mathematics in the 1980's, after Mandelbrot produced the first computer-generated images of 
the set which was named after him by Douady. One of their many contributions was to 



demonstrate the significance of equipotential lines, external angles and external rays by using 
an analogy from electrostatics. Extensive elaboration is found in the books of the Bremen 
group. This discussion will attempt to present my limited understanding of these concepts in a 
form which does not require a degree in mathematics to understand. 
 

 
Imagine a straight, infinitely long wire, with a charge applied to its surface. There will be a 
potential difference between a point on the surface and another point at a given distance. The 
sets of all points with the same potential differences will consist of concentric cylinders. A 
cross section of this system will yield a plane that contains a two-dimensional representation of 
this system, a “unit disk” which corresponds to the Julia set of c = (0 + 0i). Field lines from the 
center of the disk connect surface points on the boundary of the disk (i.e. the actual Julia set) to 
outside points and will be orthogonal to the equipotential lines formed by the cross sections of 
the concentric cylinders. The position of an outside point is given by the angle, or external 

argument, formed by the field line, or external ray, at its intersection with the boundary at the 
surface point. Since the equipotential lines are circles and the external rays are straight, the 
external argument is simply the angle of the ray relative to the origin, or center of the wire. It is 
convenient to express these angles in “turns” from 0 to 1. A turn is simply (radians / 2π). Most 
of the angles of interest are rational and typically are referred to as (numerator / denominator). 
 
In Mandelbrot and Julia sets, the equipotential lines of interest correspond to the boundaries 
between level sets, which are determined by n, the iteration counts of escaping points. The 
potential of a point can be approximated by the expression: log(size) / 2ⁿ , which is used in the 
Continuous Potential outside coloring algorithm, described in the Outside Coloring Methods 
section. 
 
 
 
 
 
 
 
 



 
The situation becomes more complicated if the shape of the wire, or two-dimensional unit disk, 
changes. Imagine pinching some points of the disk together  to form the roots of buds, and 
stretching other points out to form branching filaments. The ultimate result is the Mandelbrot 
set. Equipotential lines close to the set follow its contour closely. However, the closer these 
lines approach “infinity”, or a suitably-determined bailout value, the closer z² + c approaches z², 
and the lines become more circular. The external rays must remain orthogonal to the 
equipotential lines, so they are no longer straight, and thus determining the external arguments 
and tracing the rays becomes more difficult. 
 
However, Douady and Hubbard showed, via a form of Boettcher conjugation, that the unit disk 
can be mapped to the points of Julia and Mandelbrot images. A point can be assigned polar 
coordinates which correspond to its potential and external argument respectively. 
 
Period doubling can be used to express an argument as a binary expansion. When a starting 
point is iterated, it is squared. In polar coordinates, this means squaring the modulus, (its length) 
and doubling the argument (its angle). So, the square of (3.0, 1/6) is (9.0, 1/3). With each 
iteration, the resulting argument can be observed to be greater than 1/2, or not. The expansion is 
amended progressively with a 1 or 0 accordingly. For example, iterating 1/3 leads to 2/3, 4/3, 
8/3 &c. which when normalized becomes a repeating series 1/3, 2/3, 1/3, 2/3 .... The binary 
expansion becomes 0.0, 0.01, 0.010, 0.0101, 0.0101 ... 01. It consists of a repeating period of 
01, which starts immediately, so the argument is considered periodic with a period of 2. 
Iterating 2/7 leads to 2/7, 4/7, (8/7 == 1/7), 2/7, 4/7, 1/7.... The binary expansion is 0.0, 0.01. 
0.010, 0.0100, 0.01001, 0.010010... 010. It is periodic with a period of 3. Iterating 1/12 leads to 
2/12, 4/12, 8/12, (16/12 == 4/12), (32/12 == 8/12), (64/12 == 4/12) &c., so the expansion 
becomes 0.0, 0.00, 0.000, 0.0001, 0.00010, 0.000101 ... 01. It has a period of 2, but this period 
is not reached until the third iteration, so the argument is considered pre-periodic. It can be seen 
by this process that arguments with odd denominators are periodic and those with even 
denominators are pre-periodic.  
 
To express the external argument of a point z in a form that can be used in computer programs, 
we can return to the Boettcher conjugation. The argument arg(z) of the point is the angle it 
forms with the real axis at the origin. Its external argument argc(z) is calculated for a suitable 
number of iterations n as follows: 

 



 
External rays are the curve segments which consist of points with the same external arguments. 
They can be demonstrated as boundaries between cells in binary decomposition images (in 
which points are colored according to whether the values of their arguments are greater than 1/2 
or not). 
 

 

The relationship between binary 
decomposition and external rays can be 
seen more clearly in this image. These rays 
comprise a set with the even denominator 
32 and terminate on filament tips or branch 
points.

 
 



 
In this image, the binary decomposition cells are labeled in a counter-clockwise direction. 
Several external rays are shown. The rays with odd denominators (1/7 and 2/3), which are 
periodic, go to root points of buds (the “pinch” points where buds are attached to larger buds). 
The ray with an even denominator (5/16) is pre-periodic and attaches to the point at the tip of a 
filament; such points are known as Misiurewicz points, and their orbits also are pre-periodic. In 
both cases, the rays travel through the binary decomposition cells whose labels correspond to 
the binary expansions of the external arguments of the rays. 
 



 
In the main cardioid, the pairs of periodic rays attached to the root of a bud of period p have the 
denominator (2p - 1). Pre-periodic rays which develop a period p after n iterations have the 
denominator 2ⁿ * (2p - 1). Similar relationships can be observed in the smaller buds. 
Misiurewicz points at branching points of filaments have two or more rays attached to them, as 
seen at the point with rays of 9/56, 11/56 and 15/56. 
 
 
 

 
This image shows some external rays in a series of Julia sets.    
 



 
While binary decomposition is a simple way to demonstrate external rays, it is not so easy to 
draw them individually. This image shows the external ray with the external argument 2/5 in 
red, and a straight ray from the origin in blue, with an argument of (2/5 * 2π) radians or 144º 
and a slope of tan(144º) = -0.727. The two rays meet at infinity, from which the external ray 
extends toward the root point of the period 4 bud at (-1.25, 0.0). 
 
At (x, y), the length “R” of the green segment from the origin is 2.192 and its argument “Θ” is 
2.723 radians or 156º. Its position in polar coordinates is (R, Θ), which also can be expressed as 
the complex number R * e(Θ * i). From this, we can return to x = R * cos(Θ) 
= -2.0 and y = R * sin(Θ) = 0.897. The goal is to find such points (x(n), y(n)), for the given 
argument Θ and a series of radii R(n), which when iterated approximate the points 
R(n) * e(Θ * i). Since the Mandelbrot function is M(z) = z2 + c (or similarly for the Julia 
function), and a point in polar coordinates is squared by squaring the radius and doubling the 
argument, this means that 

 
We will return to this equation below.    
 
A rough approximation of an external ray can be obtained by asking the computer, after 
iterating each point and calculating its external argument, to color it distinctly if that argument 
happens to be the desired one. Problems with this approach include the fact that the screen is 
divided into pixels, and the desired argument, unless it is 0 or 1/2, probably does not fall 



directly onto the pixel's value. So a range must be specified which captures too many pixels in 
some locations in order not to have gaps in the ray. But since the argument values are tightly 
compacted close to the M-set, that range will cause significant spillover artifacts in this part of 
the image. 
 
External rays for Julia sets can be drawn by inverse iteration, since the value of c remains 
constant. A point with the desired argument near “infinity” is selected, so that z² + c can be 
considered equivalent to z². Iterations of sqrt(z - c) gradually approach the Julia set along a ray. 
(Depending on the selected maxiter, the points land on one of the rays described by period 
doubling of the argument.) A challenge is that at each step there are 2 roots. The correct one can 
be selected by forward iterating the previous value of z while backward iterating the current z 
and saving the values, comparing them at each step to the 2 roots and selecting the closer one. 
Another problem is that as the points approach the set boundary, their differences become small 
enough to exceed the floating point limit of the computer, necessitating multiple precision 
calculation algorithms to draw the ray relatively close to the boundary.  
 
A more satisfactory approach, which works for both Julia and Mandelbrot sets, is to use 
Newton's method, for which I've adapted Wolf Jung's code from his program Mandel. This 
technique converges on the root(s) of a function “F” which equals zero, by starting with a 
“reasonable” approximation “X(0)” and iterating X(n+1) = X(n) - F(X(n)) / F' (X(n)), where F' 
is the derivative of F. A popular use of this technique produces fractals from the equation 
zp = 1. Thus zp - 1 = 0 and with a bit of manipulation, 

 
With p = 2, there are two roots, 1.0 and -1.0, on the real number axis. Along this axis, and also 
anywhere on the complex plane, all points where x < 0.0 (brown) converge to (-1.0, 0.0), all 
points where x > 0.0 (blue) converge to (1.0, 0.0), and points where x = 0.0 are indeterminate, 
requiring division by 0. With p = 3, there is only one root on the real axis, but there are two 
additional roots (-1/2, ± √3/2) on the complex plane, all falling on the circle with radius = 1. 
Indeterminate points result in chaotic orbits which make the fractal interesting. 
 
 
 
 
 
 
 
 



Returning to external rays, we revise the previous equation: 

 
A large initial value of R is selected to represent infinity, and an initial approximation z(0) is set 
at R * e(Θ * i), with Θ being the desired external argument converted from turns to radians. z(0) 
then is iterated, which is as challenging to program as it looks. When the difference between 
z(n) and z(n+1) is less than a predetermined value, z(n+1) is accepted as a point on the ray. 
Drawing the ray on the screen consists of connecting the point to the previous point with a line 
segment. R is progressively decreased and the process is repeated to generate new points. 
 
Drawing external rays in the program: Select the menu item Options → External Rays. A 
dialog box will let you select the external argument of the desired ray as N / D. The maximum 
denominator is 256, and the numerator must be between 0 and (D - 1). You can choose to draw 
just the single ray, or all rays with the designated denominator, in which case the value of N 
does not matter. You can choose the color that the ray(s) will be drawn with. The ray(s) are 
automatically drawn when you click the OK button. You can draw as many rays as you like. To 
erase the rays, redraw the fractal with the Plot Fractal menu command. If for some reason you 
zoom into the image extremely deeply, Newton's method might misfire and jump to the wrong 
root.   
 

9. Conclusion 
 
Considering the “informational content” of a fractal image, Douady emphasizes that while a 
textual description would be “enormous”, the program that produces it is very short, with the 
mathematical part taking only a few lines within it. He draws an analogy with the “phenomenon 
of developing information” from a compact key (DNA) in biology. A complete transcription of 
an organism's DNA would be markedly brief compared to ponderous volumes of anatomy, 
physiology and psychology. He imagines “scientists faced with the collections of Julia sets 
without knowing where they came from”, recording lengthy observations and giving “a 
description of the specific features attached to each term of the classification.” But he clarifies, 
“I am not claiming that Julia sets can provide a model for any biological phenomenon, but they 
are a striking example of how a very simple dynamical system can develop the small 
information contained in a key, and produce various highly organized structures.” 
 
 
 
 
 



Map 36, The Beauty of Fractals 

 
Mathematical truths, ranging from basic laws of arithmetic to expressions involving imaginary 
numbers that can produce the beauty of fractals, are neither matter nor energy. They can be 
considered to exist independent of space and time, and to predate the Big Bang and the density 
of matter that exploded,  regardless of where it came from. They seem to represent well the 
sentiment of Keats's Grecian urn, that “Beauty is truth, truth beauty, - that is all / Ye know on 
earth, and all ye need to know." 
 
Programming and help file authoring by: 
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10. Disclaimer 
 
This is unsupported, non-standard software. It is provided "as is" and any express or implied 
warranties, including, but not limited to, the implied warranties of merchantability and fitness 
for a particular purpose are disclaimed. In no event shall the author be liable for any direct, 
indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, 
procurement of substitute goods or services; loss of use, data or profits; or business 
interruption) however caused and on any theory of liability, whether in contract, strict liability, 
or tort (including negligence or otherwise) arising in any way out of the use of this software, 
even if advised of the possibility of such damage.  


