
MATH 395 Spectral Graph Theory Rombach Week 9

Cheeger constant and conductance

The Cheeger constant of a graph is a measure of its “bottleneckedness”. Intuitively, if a graph
is well-connected, it should not be possible to cut off a “big” piece by removing a small number
of edges. We can interpret “big” either as number of vertices or number of edges. These two
views correspond to eigenvalues of the Laplacian and normalized Laplacian respectively.
For a subset S ⊆ V (G), we let the boundary be

δS = {uv ∈ E(G) | u ∈ S, v ∈ S}.

If we interpret the size of S as number of vertices, we let

θ(S) =
|δS|
|S|

.

Then, the Cheeger constant of a graph G is defined as the smallest such cut:

θG = min
S⊆V (G)

|δS|
min(|S|, |S|)

.

If, instead, we are interested in the size of S in terms of edges, we let

φ(S) =
|δS|
vol S

,

where

vol S =
∑
v∈S

dv.

Then, the Cheeger constant, or sometimes called conductance in this case, of a graph G is
defined as the smallest such cut:

φG = min
S⊆V (G)

|δS|
min(vol S, vol S)

.

Recall that in both the Laplacian and the normalized Laplacian, the smallest eigenvalue is
0, and the multiplicity of 0 is equal to the number of connected components. This implies
that the second-smallest eigenvalue is nonzero if and only if the graph is connected. These
second-smallest eigenvalues are closely related to the two Cheeger constants. Let 0 = λ0 ≤
λ1 ≤ · · · ≤ λn−1 be the eigenvalues of the Laplacian, and 0 = µ0 ≤ µ1 ≤ · · · ≤ µn−1 be the
eigenvalues of the normalized Laplacian.

Theorem 1. We have
θ2G

2∆(G)
≤ λ1 ≤ 2θG,

and
φ2G
2
≤ µ1 ≤ 2φG.

In class, we discussed the set-up for the proofs of the lower bounds (on theta and phi).

Exercise 1. Prove that µ1 ≤ 2φG. 3 points
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Exercise 2. Prove that λ1 ≤ 2θG. 3 points

Exercise 3. Find θQn and φQn, where Qn is the n-dimensional hypercube. 1 point

Exercise 4. Find θKn and φKn, where Kn is the complete graph on n vertices. 2 points

For the upper bound side of the theorem, let’s assume that G is a d-regular graph. In this
case, the proofs that θ(G) ≤

√
2∆λ1 and φ(G) ≤

√
2µ1 are very similar, because θ and φ are

equal up to the constant d, and we’ll work with φ(G). We let

R(~x) =
~xTL~x
d~xT~x

=

∑
uv∈E(G)(xu − xv)2

d
∑

v∈V (G) x
2
v

.

Now, the goal is to show for any ~x ⊥ ~1, there exists an S ⊆ V (G) such that φ(S) =
O(

√
(R(~x))). We do this with the following two lemmas.

Lemma 2. For any ~x ⊥ ~1 there exist two nonnegative vectors ~y and ~z on disjoint support
such that R(~y), R(~z) ≤ 4R(~x).

Exercise 5. Prove Lemma 2. Let 2 points

yi =

{
xi, xi > 0,

0, otherwise,
zi =

{
−xi, xi < 0,

0, otherwise.

Now, show that
~yTL~y, ~zTL~z ≤ ~xTL~x.

Then, show that ~yT~y + ~zT~z = ~xT~x. For the proof to work, we need ~yT~y, ~zT~z ≥ 1/4. If this is
not the case for one of them, consider a shift ~x+ c×~1.

Lemma 3. For any nonnegative ~y there is a set S in the support of ~y such that φ(S) =
O(

√
(R(~y))).

Exercise 6. Prove Lemma 3. We will use the probabilistic method. You should try this proof 3 points
in particular if you have some experience with probability. (Otherwise this might be tricky, but
I am happy to talk you through it.) Consider the vector ~y′ given by y′i = y2i /maxj(yj). Let t be
a continuous random variable chosen uniformly from the interval [0, 1]. Let S = {v : y′v > t}.
Show that

E([S, S])

dE(|S|)
=

∑
uv∈E(G) |xu − xv|
d
∑

v∈V (G) xv
.

Show that for nonnegative random variables A and B it holds that E(A)/E(B) ≤ c implies
that with nonzero probability A/B ≤ c. Complete the proof from there.

Finding the second eigenvector ~x1 of L or L cannot be done in linear time, but there are
algorithms that find a vector ~x′1 with R(~x′1) = O(R(~x1)) in linear time. From the above
results, we see that this can be used to efficiently find small cuts S in networks.

2


