These notes are mostly based on talks and notes by Steve Butler
(e.g. https://www.d.umn.edu/d̃froncek/MCCCC_2018/abstracts/Butler_slides.pdf, or "Algebraic aspects of the normalized Laplacian").

Normalized Laplacian Matrices

The normalized Laplacian matrix is not as well-studied as the traditional Laplacian, but it combines some of the useful aspects of adjacency and Laplacian matrices.
The normalized Laplacian is defined as follows:

$$
\mathcal{L}=D^{-\frac{1}{2}} L D^{-\frac{1}{2}}=I-D^{-\frac{1}{2}} A D^{-\frac{1}{2}},
$$

where D is the diagonal degree matrix as before. Note that we must assume there are no isolated vertices. (Those are uninteresting from a spectral perspective anyway.)
First, we look at ways in which the normalized Laplacian is related to the adjacency matrix. Have that when $A \vec{x}=\lambda \vec{x}$, then for every vertex v we have

$$
\sum_{u, u v \in E(G)} x_{u}=\lambda x_{v}
$$

Now, suppose that $\mathcal{L} \vec{x}=\lambda \vec{x}$. We let $\vec{y}=D^{-\frac{1}{2}} \vec{x}$. We call this vector a harmonic eigenvector, and note that it is not an eigenvector of \mathcal{L} although it is related to one.

Exercise 1. Show that we have

$$
\sum_{u, u v \in E(G)} y_{u}=(1-\lambda) d_{v} y_{v} .
$$

Exercise 2. Show that the multiplicity of the eigenvalue 0 of A is equal to the multiplicity of the eigenvalue 1 of \mathcal{L}.

Exercise 3. Find an "easy" harmonic eigenvector and corresponding eigenvector of \mathcal{L}, and show that the multiplicity of the eigenvalue of 0 in \mathcal{L} is equal to the number of connected components of G.

Exercise 4. Consider weighted graphs. Let $c G$ be the graph G with all edgeweights multiplied

2 points

1 point

1 point

1 point by a (positive) constant c. Then $c A_{G}=A_{c G}$. Show that $\mathcal{L}_{G}=\mathcal{L}_{c G}$.

As before, consider an equitable partition of a graph G into sets $V=V_{1} \cup \cdots \cup V_{k}$. Recall that this means that for any $1 \leq i, j \leq k$ we have that every vertex in V_{i} has the same number of neighbors in V_{j}. Instead of degrees, we let

$$
b_{i j}=\mid\left\{u v \text { s.t. } u \in V_{i}, v \in V_{j}\right\} \mid .
$$

Note that edges within a set V_{i} are double-counted. Let \mathcal{L}_{B} be the normalized Laplacian of the edge-weighted graph associated to this B matrix. Note that this graph is undirected. Then, we have

$$
\operatorname{spec}\left(\mathcal{L}_{B}\right) \subseteq \operatorname{spec}\left(\mathcal{L}_{G}\right)
$$

This is a result due to Butler and Chung (Handboook of Linear Algebra).

Exercise 5. Use the previous results to find the normalized Laplacian spectrum of the path graphs P_{n}.

Now, we will compare the normalized Laplacian to the traditional Laplacian. In particular, let's look at the Rayleigh quotient.

Exercise 6. Show that

$$
\frac{\vec{x}^{T} \mathcal{L} \vec{x}}{\vec{x}^{T} \vec{x}}=\frac{\sum_{u v \in E(G)}\left(y_{u}-y_{v}\right)^{2}}{\sum_{v} d_{v} y_{v}^{2}} .
$$

Exercise 7. Show that

$$
0 \leq \frac{\vec{x}^{T} \mathcal{L} \vec{x}}{\vec{x}^{T} \vec{x}} \leq 2
$$

What do the multiplicities of the eigenvalues 0 and 2 tell us about G ?
The following table summarized some aspects of graphs that can be deduced from te spectra of various associated matrices.

	nr. components	bipartite?	nr. bip components	nr. edges
A	no	yes	no	yes
L	yes	no	no	yes
Q	no	no	yes	yes
\mathcal{L}	yes	yes	yes	no

