## Signless Laplacian Matrix

We discuss one more version of the Laplacian matrix of a graph $G$ : the signless Laplacian. This matrix is defined as

$$
Q(G)=D(G)+A(G)=L(G)-2 A(G)
$$

Exercise 1. Show that if the diameter of a graph $G$ is $d$, then $Q(G)$ has at least $d+1$ eigenvalues. (As we already know about $A(G)$ and $L(G)$.)

Exercise 2. We had that

$$
\vec{x}^{T} L \vec{x}=\sum_{u v \in E(G)}\left(x_{u}-x_{v}\right)^{2} .
$$

Write a similar expression for the signless Laplacian.
Exercise 3. What can you say about the multiplicity of the eigenvalue 0?
Let $S(G)$ be the signless version of the edge incidence matrix: i.e. an $n \times m$ matrix, which has a 1 in row $v$ and column $e$ if $v \in e$.
Exercise 4. Show that $Q=S S^{T}$.
Exercise 5. Show that for any $n \times m$ matrix $A$ and $m \times n$ matrix $B$, we have

$$
\lambda^{n} \operatorname{det}\left(\lambda I_{n}-A B\right)=\lambda^{m} \operatorname{det}\left(\lambda I_{m}-B A\right)
$$

and conclude that $A B$ and $B A$ have the same spectrum (including multiplicities), except for the 0 eigenvalue.
Exercise 6. Let Line $(G)$ be the line graph of $G$. Show that all eigenvalues of $A(\operatorname{Line}(G))$ are bounded from below by -2.

Exercise 7. Use the facts from the previous questions to explain the relationship between the

1 point

1 point

2 points

1 point
4 points

## Transition matrices

A (linear) discrete dynamical system takes the form

$$
\vec{x}(t)=P \vec{x}(t-1) \text {, with some initial condition } \vec{x}(0)=\vec{x}_{0} .
$$

We can write this as a direct formula

$$
\vec{x}(t)=P^{t} \vec{x}_{0} .
$$

We define a Markov chain on (finitely many) states $S=\{1,2, \ldots, n\}$ as a process that starts in some state and moves to another state (or stays put) at each discrete time step. So, at each time step $t$, we have a random variable $X_{t}$ which represents the state of the process at time $t$. A Markov process is time-homogeneous and memoryless. This means that the random variables $X_{1}, X_{2}, \ldots$ are identically distributed, and that at each time step, the probability distribution of the next step of the system depends only on the current state, i.e.

$$
\mathbb{P}\left(X_{t+1}=k \mid X_{1}=x_{1}, \ldots, X_{t}=x_{t}\right)=\mathbb{P}\left(X_{t+1}=k \mid X_{t}=x_{t}\right) .
$$

We call these the transition probabilities:

$$
p_{j i}=\mathbb{P}\left(X_{t+1}=j \mid X_{t}=i\right)
$$

which we can represent in a $n \times n$ transition matrix $P$.
We call $\vec{x}$ a distribution vector if it has nonnegative elements that add up to 1 . We then have the following result.

Exercise 8. Show if $P$ is a transition matrix and $\vec{x}$ is a distribution vector, then $P \vec{x}$ is a distribution vector. In fact, the transformation $P$ always preserves the sum of elements of $a$ vector.

Exercise 9. Show that if $\overrightarrow{x_{t}}$ represents the distribution of probabilities of $X_{t}$ taking values in $\{1,2, \ldots, n\}$, then $\vec{x}_{t+1}=P \vec{x}_{t}$ represents the distribution of probabilities of $X_{t+1}$ taking values in $\{1,2, \ldots, n\}$.

Exercise 10. Show that if If $P$ is a primitive $n \times n$ transition matrix, then $P$ has exactly one distribution eigenvector $\vec{x}$ with eigenvalue 1 (where 1 is the largest eigenvector), meaning that $P \vec{x}=\vec{x}$. This is called the equilibrium distribution of $P$, and denoted by $\vec{x}_{\text {equ }}$.
For any starting distribution $\vec{x}_{0}$, we have

$$
\lim _{t \rightarrow \infty} P^{t} \vec{x}_{0}=\vec{x}_{e q u}
$$

Exercise 11. Show that if $P$ has a unique equilibrium, this does not imply that $P$ is primitive.

0 points

1 point

3 points

1 point

## Number of returns in a random walk on a finite graph

The following example and proof are taken from Bollobás' Modern Graph Theory. We've spent some time thinking about Markov chains on a finite set of states, which can be thought of as random walks on a finite graph. Now we'll look in more detail at the very basic case where a walker is on a finite, simple, undirected graph $G(V, E)$. The walker starts at a starting vertex $v_{0} \in V(G)$, and at each time step, they move from their current vertex $v$ to a neighboring vertex of $v$, choosing one uniformly from the set $\Gamma(v)$ (the neighborhood of $v$ ). For example, the following graph $G$ has the transition matrix $M$ :


$$
M=\left(\begin{array}{cccc}
0 & \frac{1}{2} & \frac{1}{3} & 0 \\
\frac{1}{2} & 0 & \frac{1}{3} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 1 \\
0 & 0 & \frac{1}{3} & 0
\end{array}\right)
$$

Exercise 12. Write $P$ of this random walk in terms of $A(G)$ and $D(G)$.
Exercise 13. Show that when $G$ is a connected and non-bipartite graph, then

0 points
2 points

$$
\vec{x}=\frac{1}{2 m}\left(\begin{array}{c}
d(1) \\
d(2) \\
\vdots \\
d(n)
\end{array}\right)
$$

where $m=|E(G)|$ is the equilibrium vector of the random walk on $G$.

