
MATH 395 Spectral Graph Theory Rombach Week 4

Laplacian Matrix

We now introduce the Laplacian matrix of a graph, which is the more commonly used matrix
when analyzing spectra of graphs. Over the next few weeks you will be convinced of its
usefulness. We define the Lapcian as follows (there are related, but differing definitions in the
literature). Let L be the Laplacian of an undirected unweighted graph G. Then

Luv =


d(u), u = v

−1, uv ∈ E(G),

0, otherwise.

Exercise 1. If G is d-regular, what is the relationship between its (adjacency) spectrum and 1 point
Laplace spectrum?

Exercise 2. Let λ1, . . . , λn be the eigenvalues of A, and µ1, . . . , µn be the eigenvalues of L. 1 point
Show that

2|E(G)| =
∑
i

λ2i =
∑
i

µi.

Exercise 3. Find the Laplace eigenvalues of the path graph Pn. 2 point

Exercise 4. Describe the value (L~x)u in terms of values xu and xv of neighbors of u. 0 point

Exercise 5. How would you interpret the number ~xTL~x? 0 point

It is easy to see that the all-ones vector is an eigenvector of L for any graph; not just regular
graphs. In this case, however, it turns out the have the smallest eigenvalue rather than largest.

Exercise 6. Find the multiplicity of the eigenvalue 0 for a connected graph. What happens 1 point
with disconnected graphs?

Note that Figure 1.1 on p.7 in Brouwer-Haemers shows that the adjacency spectrum does not
help us distinguish between connected and disconnected graphs.

Theorem 1. The Laplacian of an undirected unweighted graph has nonnegative eigenvalues.

This follows directly from the following fact about matrices. Let M be an n × n complex
matrix. Let ri(M) =

∑
j 6=iMij . Then a Gershgorin disc is the ball (disc) B(mii, ri(M)) in

the complex plane.

Theorem 2 (Gershgorin’s Circle Theorem). All eigenvalues of M lie in
⋃

iB(mii, ri(M)).

We used Theorem 2.2.1 (p.24) in Spielman to prove parts of Perron-Frobenius. This theorem
states that the Rayleigh quotients of vectors are bounded between the smallest and largest
eigenvalues of a real symmetric matrix. Let µmin and µmax be the smallest and largest
eigenvalues of L, respectively. For any vector nonzero ~x

µmin ≤
~xTL~x

~xT~x
≤ µmax,

and these extrema are achieved exactly by the eigenvectors of µmin and µmax, respectively.

Exercise 7. Use the above fact to show that all eigenvalues of L are nonnegative. 2 points
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