Paths, products and equitable partitions

We will continue to work this week with the adjacency matrices of simple graphs. From last week (and a little of this week), we know the following spectra for a few standard graph classes:

$$K_{n}: n - 1, -1, -1, \dots, -1$$

$$K_{n_{1},n_{2}}: \sqrt{n_{1}n_{2}}, -\sqrt{n_{1}n_{2}}, 0, \dots, 0$$

$$C_{n}: 2\cos\left(\frac{2\pi k}{n}\right), \ 0 \le k \le n - 1$$

$$P_{n}: 2\cos\left(\frac{\pi k}{n+1}\right), \ 1 \le k \le n.$$

Exercise 1. Find the spectrum of P_n , the path graph on n vertices.

Exercise 2. Let G be a d-regular graph. Investigate the eigenvalue spectrum of \overline{G} . Use this 1 point method to find the spectrum of $K_{n,n}$.

Graph products

We define three useful graph products. The *tensor* or *Kronecker product* $G \times H$, the *Cartesian* product $G \square H$, and the strong product $G \boxtimes H$. They are defined as follows:

 $V(G \times H) = V(G \Box H) = V(G \boxtimes H) = V(G) \times V(H),$ $E(G \times H) = \{(u, v)(x, y) \mid ux \in E(G) \text{ and } vy \in E(H)\},$ $E(G \Box H) = \{(u, v)(x, y) \mid u = x \text{ and } vy \in E(H) \text{ or } ux \in E(G) \text{ and } v = y\},$ $E(G \boxtimes H) = E(G \times H) \cup E(G \Box H).$

Exercise 3. For two graphs H and G, write the adjacency matrix $M_{G \times H}$ in terms of M_G 1 point and M_H , and find the spectrum of $G \times H$ in terms of the spectra of G and H.

Exercise 4. For two graphs H and G, write the adjacency matrix $M_{G\square H}$ in terms of M_G 1 point and M_H , and find the spectrum of $G\square H$ in terms of the spectra of G and H.

Exercise 5. For two graphs H and G, write the adjacency matrix $M_{G\boxtimes H}$ in terms of M_G 1 point and M_H , and find the spectrum of $G \boxtimes H$ in terms of the spectra of G and H.

Equitable partitions

An equitable partition of a graph G is a partition of the vertices $V = V_1 \cup \cdots \cup V_2$, such that there exist constants d_{ij} for $1 \leq i, j, \leq n$ such that each vertex in V_i has exactly d_{ij} neighbors in V_j .

Exercise 6. Find a nontrivial equitable partition of a graph for which you know the eigenvalue 1 point spectrum, and look at the eigenvalues of the matrix B with $B_{ij} = d_{ij}$. Formulate a conjecture.

Exercise 7. Prove your conjecture from the previous exercise.

2 point

3 points