Paths, products and equitable partitions

We will continue to work this week with the adjacency matrices of simple graphs. From last week (and a little of this week), we know the following spectra for a few standard graph classes:

$$
\begin{aligned}
K_{n} & : n-1,-1,-1, \ldots,-1 \\
K_{n_{1}, n_{2}} & : \sqrt{n_{1} n_{2}},-\sqrt{n_{1} n_{2}}, 0, \ldots, 0 \\
C_{n} & : 2 \cos \left(\frac{2 \pi k}{n}\right), 0 \leq k \leq n-1, \\
P_{n} & : 2 \cos \left(\frac{\pi k}{n+1}\right), 1 \leq k \leq n .
\end{aligned}
$$

Exercise 1. Find the spectrum of P_{n}, the path graph on n vertices.
Exercise 2. Let G be a d-regular graph. Investigate the eigenvalue spectrum of \bar{G}. Use this
3 points
1 point method to find the spectrum of $K_{n, n}$.

Graph products

We define three useful graph products. The tensor or Kronecker product $G \times H$, the Cartesian product $G \square H$, and the strong product $G \boxtimes H$. They are defined as follows:

$$
\begin{aligned}
& V(G \times H)=V(G \square H)=V(G \boxtimes H)=V(G) \times V(H), \\
& E(G \times H)=\{(u, v)(x, y) \mid u x \in E(G) \text { and } v y \in E(H)\}, \\
& E(G \square H)=\{(u, v)(x, y) \mid u=x \text { and } v y \in E(H) \text { or } u x \in E(G) \text { and } v=y\}, \\
& E(G \boxtimes H)=E(G \times H) \cup E(G \square H) .
\end{aligned}
$$

Exercise 3. For two graphs H and G, write the adjacency matrix $M_{G \times H}$ in terms of M_{G} and M_{H}, and find the spectrum of $G \times H$ in terms of the spectra of G and H.

Exercise 4. For two graphs H and G, write the adjacency matrix $M_{G \square H}$ in terms of M_{G} and M_{H}, and find the spectrum of $G \square H$ in terms of the spectra of G and H.

Exercise 5. For two graphs H and G, write the adjacency matrix $M_{G \boxtimes H}$ in terms of M_{G} and M_{H}, and find the spectrum of $G \boxtimes H$ in terms of the spectra of G and H.

Equitable partitions

An equitable partition of a graph G is a partition of the vertices $V=V_{1} \cup \cdots \cup V_{2}$, such that there exist constants $d_{i j}$ for $1 \leq i, j, \leq n$ such that each vertex in V_{i} has exactly $d_{i j}$ neighbors in V_{j}.

Exercise 6. Find a nontrivial equitable partition of a graph for which you know the eigenvalue spectrum, and look at the eigenvalues of the matrix B with $B_{i j}=d_{i j}$. Formulate a conjecture.

Exercise 7. Prove your conjecture from the previous exercise.

1 point

1 point

1 point

