Minimum rank over \mathbb{F}_{2}

We start with a warm-up exercise.
Exercise 1. Show that the rank over \mathbb{F}_{2} of the adjacency matrix of a graph is always even.
For the last week of class, we will do a little bit of linear algebra over \mathbb{F}_{2}. A faithful orthogonal representation over \mathbb{F}_{2} of a graph is an assignment of vectors in $\vec{u}_{i} \in \mathbb{F}_{2}^{k}$, for $1 \leq i \leq n$ to the vertices of G, such that $\vec{u}_{i} \cdot \vec{u}_{j}=0$ for $i \neq j$ if and only if $i j \notin E(G)$. We denote by $c_{2}(G)$ the minimum k for which such a representation exists. Let $\operatorname{mr}_{2}(G)$ be the minimum rank over all matrices that fit G over \mathbb{F}_{2} (where the rank is also taken over \mathbb{F}_{2}).

Exercise 2. Show (in two ways) that

$$
\operatorname{mr}_{2}(G) \leq c_{2}(G)
$$

In fact, these two invariants are closely related. In class, we outline the proof for the following theorem. This and more can be found in the following paper: https://www.combinatorics. org/ojs/index.php/eljc/article/view/v29i1p38

Theorem 1. For any graph G, we have

$$
\operatorname{mr}_{2}(G) \leq c_{2}(G) \leq \operatorname{mr}_{2}(G)+1
$$

For the n-dimensional hypercube Q_{n}, we have that $\operatorname{mr}_{2}\left(Q_{n}\right)=2^{n-1}$. Last week, we briefly discussed a proof described in "Zero forcing sets and the minimum rank of graphs" (AIM Minimum Rank - Special Graphs Work Group), which is based on a recursive construction of a minimum rank matrix that fits Q_{n}. We now give an alternative proof using faithful orthogonal representations.

Exercise 3. Show that $\operatorname{mr}_{2}\left(Q_{n}\right) \geq 2^{n-1}$. Do not use zero-forcing. Instead, look at the adjacency matrix of Q_{n} directly.

Theorem 2. For the n-dimensional hypercube Q_{n}, we have

$$
\operatorname{mr}_{2}\left(Q_{n}\right)=2^{n-1}
$$

Proof. We only need to show that $\operatorname{mr}_{2}\left(Q_{n}\right) \leq 2^{n-1}$, and we do that by showing that $c_{2}\left(Q_{n}\right)=$ 2^{n-1}. Consider the following representation of the vertices of Q_{n}. Let S be the set of vertices in $V\left(Q_{n}\right)$ such that their bitstrings have an even number of 1s. Note that this is a maximum independent set. Let $N[k]=N(k) \cup\{k\}$. For each $k \in S$, and for $1 \leq i \leq n$, let

$$
\left(\vec{v}_{k}\right)_{i}= \begin{cases}1, & \text { if } i \in N[k] \\ 0, & \text { otherwise }\end{cases}
$$

Then, we let X be the matrix whose columns are $\vec{v}_{1}, \ldots, \vec{v}_{2^{n-1}}$. We claim that the rows of X are a faithful orthogonal representation of Q_{n} and therefore $X X^{T}$ is a matrix that fits the adjacency matrix of Q_{n}.
Exercise 4. Prove the above claim.

2 points

2 points

2 points

2 points

