Minimum rank and zero forcing

Let G be a simple graph. We will consider a family of matrices that contain the information in G, and look for the smallest rank among them. In a sense, this measures the amount of information in G. Formally, we say that an $n \times n$ matrix A fits a graph G if, for any pair $i \neq j$, we have that $A_{ij} = 0$ if and only if $ij \notin E(G)$. Note that A can have any values on the diagonal. Then, we let the *minimum rank* of G be defined as

$$mr(G) = \min\{rank(A) \mid A \text{ fits } G\}.$$

Exercise 1. Find the minimum rank of K_n and $K_{p,q}$.

Exercise 2. Show that $mr(G) \leq n-1$ for any graph G. 1 point

It turns out that mr(G) = n - 1 if and only if $G \sim P_n$.

Exercise 3. Show that mr(G) > diam(G) for any graph G.

Exercise 4. Show that for $v \in V(G)$,

$$0 \le \operatorname{mr}(G) - \operatorname{mr}(G - v) \le 2,$$

and that for $e \in E(G)$

$$-1 \le \operatorname{mr}(G) - \operatorname{mr}(G - e) \le 1.$$

Consider the following game on a simple graph G. We start with a set $Z \subseteq V(G)$ and let F = Z ("filled"). If there is a vertex $v \in V \setminus F$ such that v has exactly one neighbor u that is not in F, we add u to F. We continue until there are no such vertices in the graph. Let Z(G) be the cardinality of a smallest set Z such that F = V. This is called the zero forcing number, and it has a surprising connection to the minimum rank problem.

Theorem 1. For any *n*-vertex graph G, we have $n - mr(G) \leq Z(G)$.

Proof. We'll follow the proof in "Zero forcing sets and the minimum rank of graphs" by the AIM Minimum Rank – Special Graphs Work Group. Let A be a matrix that fits G.

Exercise 5. Show that if $\operatorname{null}(A) > k$ then for any $S \subseteq V$ with |S| = k, there exists a nonzero 1 point $\vec{x} \in \ker(A)$ that is 0 at every index in S.

Exercise 6. Show that if Z is a zero forcing set of G and $\vec{x} \in \text{ker}(A)$ such that \vec{x} is 0 at 1 point every index in Z, then $\vec{x} = \vec{0}$. Then, complete the proof.

2 points

1 point 2 points