Minimum rank and zero forcing

Let G be a simple graph. We will consider a family of matrices that contain the information in G, and look for the smallest rank among them. In a sense, this measures the amount of information in G. Formally, we say that an $n \times n$ matrix A fits a graph G if, for any pair $i \neq j$, we have that $A_{i j}=0$ if and only if $i j \notin E(G)$. Note that A can have any values on the diagonal. Then, we let the minimum rank of G be defined as

$$
\operatorname{mr}(G)=\min \{\operatorname{rank}(A) \mid A \text { fits } G\}
$$

Exercise 1. Find the minimum rank of K_{n} and $K_{p, q}$.
Exercise 2. Show that $\operatorname{mr}(G) \leq n-1$ for any graph G.
It turns out that $\operatorname{mr}(G)=n-1$ if and only if $G \sim P_{n}$.
Exercise 3. Show that $\operatorname{mr}(G)>\operatorname{diam}(G)$ for any graph G.
Exercise 4. Show that for $v \in V(G)$,

$$
0 \leq \operatorname{mr}(G)-\operatorname{mr}(G-v) \leq 2
$$

and that for $e \in E(G)$

$$
-1 \leq \operatorname{mr}(G)-\operatorname{mr}(G-e) \leq 1 .
$$

Consider the following game on a simple graph G. We start with a set $Z \subseteq V(G)$ and let $F=Z$ ("filled"). If there is a vertex $v \in V \backslash F$ such that v has exactly one neighbor u that is not in F, we add u to F. We continue until there are no such vertices in the graph. Let $Z(G)$ be the cardinality of a smallest set Z such that $F=V$. This is called the zero forcing number, and it has a surprising connection to the minimum rank problem.

Theorem 1. For any n-vertex graph G, we have $n-\operatorname{mr}(G) \leq Z(G)$.
Proof. We'll follow the proof in "Zero forcing sets and the minimum rank of graphs" by the AIM Minimum Rank - Special Graphs Work Group. Let A be a matrix that fits G.

Exercise 5. Show that if null $(A)>k$ then for any $S \subseteq V$ with $|S|=k$, there exists a nonzero $\vec{x} \in \operatorname{ker}(A)$ that is 0 at every index in S.

Exercise 6. Show that if Z is a zero forcing set of G and $\vec{x} \in \operatorname{ker}(A)$ such that \vec{x} is 0 at every index in Z, then $\vec{x}=\overrightarrow{0}$. Then, complete the proof.

