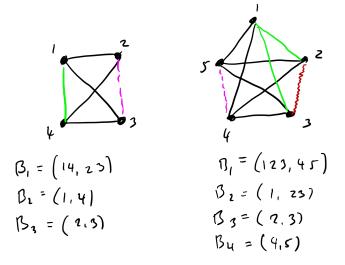
Graham-Pollak

We ask the following question: what is the smallest partition of the edges of K_n into complete bipartite graphs? Below are two examples of K_4 and K_5 . We indicate the complete bipartite graphs B_i by their two partite vertex sets (X_i, Y_i) .



In general, we can partition the edge set of any complete graph K_n into n-1 complete bipartite graphs. For example, by using the following general construction, in which each B_i is a star graph.

For
$$| \le i \le n - 1$$

B_i = (1, it1...n)

Let bp(G) indicate the smallest number of bipartite graphs needed to partition the edges of a graph G. We call this the *biclique partition number*. It turns out that for K_n , we can't do any better than the above star strategy.

Theorem 1 (Graham-Pollak). We have that $bp(K_n) = n - 1$.

Proof. The upper bound is shown in the example above, so we only need to show that $bp(K_n) \ge n-1$. Let $B_1 = (X_1, Y_1), \ldots, B_k = (X_k, Y_k)$ be a biclique partition of K_n . For $1 \le i \le n$ let \vec{x}_i and \vec{y}_i be $n \times 1$ indicator vectors of the sets X_i and Y_i :

$$(\vec{x}_i)_v = \begin{cases} 1, & \text{if } v \in X_i, \\ 0, & \text{otherwise.} \end{cases}, \quad (\vec{y}_i)_v = \begin{cases} 1, & \text{if } v \in Y_i, \\ 0, & \text{otherwise.} \end{cases}.$$

Let

and let

Exercise 1. Show that

Exercise 2. Show that

Exercise 3. Show that if

then there exists a vector \vec{v} that satisfies both $A\vec{v} = 0$ and $\mathbb{1}^T \vec{v} = 0$, and finish the proof.

Witsenhausen

We now show a more powerful theorem by Witsenhausen, of which Graham-Pollak is a corollary. For a simple graph G and its adjacency matrix A_G , let $n_+(A_G)$ be the number of (strictly) positive eigenvalues of its adjacency matrix, and $n_-(A_G)$ the number of (strictly) negative eigenvalues.

Theorem 2 (Witsenhausen). We have

 $bp(G) \ge \max(n_+(A_G), n_-(A_G)).$

Proof. We will show that $bp(G) \ge n_+(A_G)$, and the proof for $n_-(A_G)$ is almost identical. Let $B_1 = (X_1, Y_1), \ldots, B_k = (X_k, Y_k)$ be a biclique partition of K_n . For $1 \le i \le n$ let \vec{x}_i and \vec{y}_i be $n \times 1$ indicator vectors of the sets X_i and Y_i as before. Let

$$W = \{ \vec{w} \in \mathbb{R}^n \mid \vec{w}^T \vec{x}_i = 0, \ \forall i \in \{1, \dots, k\} \}.$$

We also let

$$P = \{ \vec{p} \in \mathbb{R}^n \mid A_p \vec{p} = \lambda \vec{p}, \ \lambda > 0 \}.$$

Exercise 4. Show that $W \cap P = \{\vec{0}\}$ and finish the proof. Hint: consider $\vec{w}^T A_G \vec{w}$ for $\vec{w} \in W$ 2 points and $\vec{p}^T A_G \vec{p}$ for $\vec{p} \in P$.

1 point

1 point

1 point

 $A_i = \vec{x}_i \vec{y}_i^T,$

 $A = \sum_{i=1}^{k} A_i.$

 $J - I = A + A^T.$

 $\operatorname{rank}(A) \leq k.$

 $\operatorname{rank}(A) \le n - 2,$