Interlacing

As a warm-up to interlacing, let G be a graph and let A_{G} be its adjacency matrix. Then we can say the following about $G-v$, for any vertex $v \in V(G)$, and its adjacency matrix.

Exercise 1. Show that if A_{G} has eigenvalue λ with multiplicity k, then A_{G-v}, for any $v \in$ $V(G)$, has eigenvalue λ with multiplicity at least $k-1$.

In fact, we can say something more precisely, about all eigenvalues of G and $G-v$. Let A be a real, symmetric $n \times n$ matrix, and B be a real, symmetric $m \times m$ matrix with $m<n$. Let $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of A and $\mu_{1} \leq \cdots \leq \mu_{m}$ be the eigenvalues of B. Then we say that the eigenvalues of A and B interlace if

$$
\lambda_{i} \leq \mu_{i} \leq \lambda_{n-m+i}, \text { for all } 1 \leq i \leq m
$$

Lemma 1. Let A be a real, symmetric $n \times n$ matrix. Let S be a subset of $[n]$ with $|S|=m$, and let B be obtained from A by keeping the columns and rows with indices in S. Then the eigenvalues of A and B interlace.

Proof. Without loss of generality, suppose that A has the form

$$
A=\left(\begin{array}{cc}
B & X^{T} \\
X & C
\end{array}\right)
$$

Let $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of A and $\mu_{1} \leq \cdots \leq \mu_{m}$ be the eigenvalues of B, with eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ and $\vec{w}_{1}, \ldots, \vec{w}_{n}$, respectively. We will show only that $\lambda_{i} \leq \mu_{i}$, and the other side will be very similar. Let

$$
V=\operatorname{span}\left(\vec{v}_{i}, \ldots, \vec{v}_{n}\right)
$$

and let

$$
W=\operatorname{span}\left(\vec{w}_{1}, \ldots, \vec{w}_{i}\right) .
$$

We also let

$$
\tilde{W}=\left\{\left.\left(\begin{array}{c}
\vec{w} \\
0 \\
\vdots \\
0
\end{array}\right) \in \mathbb{R}^{n} \right\rvert\, \vec{w} \in W\right\} .
$$

It is not hard to see that for any \vec{w} and associated $\tilde{\vec{w}}$ we have that

$$
\vec{w}^{T} A \vec{w}=\tilde{\vec{w}}^{T} B \tilde{\vec{w}} .
$$

By counting dimensions, we see that there must exist some non-trivial $\tilde{\vec{w}} \in V \cap \tilde{W}$. By Courant-Fisher, we now have

$$
\lambda_{i} \leq \frac{\vec{w}^{T} A \vec{w}}{\vec{w}^{T} \vec{w}}=\frac{\tilde{\vec{w}}^{T} B \tilde{\vec{w}}}{\tilde{\vec{w}}^{T} \tilde{\vec{w}}} \leq \mu_{i} .
$$

Exercise 2. Let S be a real $n \times m$ matrix such that $S^{T} S=I_{m}$. Let A be a real, symmetric $n \times n$ matrix, and let $B=S^{T} A S$. Show that A and B interlace.

The above results tell us that A_{G} and A_{G-v} have interlacing eigenvalues, but we cannot directly apply this to the Laplacian matrices.

Exercise 3. Show that the (signless) Laplacian matrices of G and $G-e$ respectively for any edge $e \in E(G)$ interlace.

Exercise 4. Show that the (signless) Laplacian matrices of G and $G-v$ respectively for any vertex $v \in V(G)$ interlace.

Independent sets

This Section is from Brouwers and Haemers 3.5.
Let $\alpha(G)$ be the size of a largest independent set. As a warm-up exercise, note that if G has an independent set of size α, then it has an $\alpha \times \alpha$ matrix of all 0 s as a principal submatrix.

Exercise 5. Use interlacing to show that

$$
\alpha(G) \leq\left|\left\{i: \lambda_{i} \leq 0\right\}\right|
$$

and

$$
\alpha(G) \leq\left|\left\{i: \lambda_{i} \geq 0\right\}\right| .
$$

Let $V=V_{1} \cup \cdots \cup V_{m}$ be any partition of V. Order the vertices by these partition classes to obtain

$$
A=\left(\begin{array}{ccc}
A_{1,1} & \ldots & A_{1, m} \\
\vdots & & \vdots \\
A_{m, 1} & \ldots & A_{m, m}
\end{array}\right)
$$

We construct a matrix \tilde{B} whose entries are the average row sums of $A_{i, j}$. This is a generalization of the B matrices we used with equitable partitions (when those row sums were constants). Let \tilde{S} be the $n \times m$ matrix that has a 1 in position i, j if $i \in V_{j}$ and 0 otherwise. Then

$$
(\tilde{B})_{i, j}=\frac{1}{\left|V_{i}\right|}\left(\tilde{S}^{T} A \tilde{S}\right)_{i, j}
$$

Exercise 6. Let

$$
D=\left(\begin{array}{ccc}
\left|V_{1}\right| & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \left|V_{m}\right|
\end{array}\right)
$$

and let $B=D^{1 / 2} \tilde{B} D^{-1 / 2}$. Show that the eigenvalues of B interlace with those of A_{G}.
Exercise 7. Show that

$$
\alpha(G) \leq n \frac{-\lambda_{1} \lambda_{n}}{\delta^{2}-\lambda_{1} \lambda_{n}},
$$

where δ is the minimum degree of G. Start with a partition $V=V_{1} \cup V_{2}$ where V_{1} is a largest independent set. Form the matrix B and consider its determinant.

Chromatic number

The chromatic number of a graph, denoted $\chi(G)$, is the smallest m such that there exists a partition $V=V_{1} \cup \cdots \cup V_{m}$ such that all sets V_{i} are independent sets. We can find both upper and lower bounds on the chromatic number from eigenvalues of the adjacency matrix.

Theorem 2. We have that

$$
\chi(G) \leq 1+\lambda_{n},
$$

with equality if and only if G is a complete graph or an odd cycle.
Theorem 3. If G has at least one edge, then we have that

$$
\chi(G) \geq 1-\frac{\lambda_{n}}{\lambda_{1}} .
$$

Exercise 8. Prove Thm 3. Let $V=V_{1} \cup \cdots \cup V_{\chi}$ be an optimal partition into independent sets. We would like to find a matrix B such that there exists some S so that $B=S^{T} A S$, but in this case we want λ_{n} to be an eigenvalue of both A and B. Let \vec{x} be an eigenvector with eigenvalue λ_{n}. Let \tilde{S} be the matrix that has the value x_{i} in position i, j if $i \in V_{j}$ and 0 otherwise.

