Interlacing

As a warm-up to interlacing, let G be a graph and let A_G be its adjacency matrix. Then we can say the following about G - v, for any vertex $v \in V(G)$, and its adjacency matrix.

Exercise 1. Show that if A_G has eigenvalue λ with multiplicity k, then A_{G-v} , for any $v \in 1$ point V(G), has eigenvalue λ with multiplicity at least k - 1.

In fact, we can say something more precisely, about all eigenvalues of G and G-v. Let A be a real, symmetric $n \times n$ matrix, and B be a real, symmetric $m \times m$ matrix with m < n. Let $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of A and $\mu_1 \leq \cdots \leq \mu_m$ be the eigenvalues of B. Then we say that the eigenvalues of A and B interlace if

$$\lambda_i \leq \mu_i \leq \lambda_{n-m+i}$$
, for all $1 \leq i \leq m$.

Lemma 1. Let A be a real, symmetric $n \times n$ matrix. Let S be a subset of [n] with |S| = m, and let B be obtained from A by keeping the columns and rows with indices in S. Then the eigenvalues of A and B interlace.

Proof. Without loss of generality, suppose that A has the form

$$A = \begin{pmatrix} B & X^T \\ X & C \end{pmatrix}.$$

Let $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of A and $\mu_1 \leq \cdots \leq \mu_m$ be the eigenvalues of B, with eigenvectors $\vec{v}_1, \ldots, \vec{v}_n$ and $\vec{w}_1, \ldots, \vec{w}_n$, respectively. We will show only that $\lambda_i \leq \mu_i$, and the other side will be very similar. Let

$$V = \operatorname{span}(\vec{v}_i, \ldots, \vec{v}_n)$$

and let

$$W = \operatorname{span}(\vec{w}_1, \ldots, \vec{w}_i).$$

We also let

$$\tilde{W} = \left\{ \begin{pmatrix} \vec{w} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n \mid \vec{w} \in W \right\}.$$

It is not hard to see that for any \vec{w} and associated \vec{w} we have that

$$\vec{w}^T A \vec{w} = \tilde{\vec{w}}^T B \tilde{\vec{w}}.$$

By counting dimensions, we see that there must exist some non-trivial $\tilde{\vec{w}} \in V \cap \tilde{W}$. By Courant-Fisher, we now have

$$\lambda_i \le \frac{\vec{w}^T A \vec{w}}{\vec{w}^T \vec{w}} = \frac{\vec{w}^T B \vec{w}}{\vec{w}^T \vec{w}} \le \mu_i.$$

Exercise 2. Let S be a real $n \times m$ matrix such that $S^T S = I_m$. Let A be a real, symmetric 3 points $n \times n$ matrix, and let $B = S^T AS$. Show that A and B interlace.

1

The above results tell us that A_G and A_{G-v} have interlacing eigenvalues, but we cannot directly apply this to the Laplacian matrices.

Exercise 3. Show that the (signless) Laplacian matrices of G and G - e respectively for any 2 points edge $e \in E(G)$ interlace.

Exercise 4. Show that the (signless) Laplacian matrices of G and G - v respectively for any 1 points vertex $v \in V(G)$ interlace.

Independent sets

This Section is from Brouwers and Haemers 3.5.

Let $\alpha(G)$ be the size of a largest independent set. As a warm-up exercise, note that if G has an independent set of size α , then it has an $\alpha \times \alpha$ matrix of all 0s as a principal submatrix.

Exercise 5. Use interlacing to show that

$$\alpha(G) \le |\{i : \lambda_i \le 0\}|$$

and

$$\alpha(G) \le |\{i : \lambda_i \ge 0\}|.$$

Let $V = V_1 \cup \cdots \cup V_m$ be any par es by these partition classes to obtain

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,m} \\ \vdots & & \vdots \\ A_{m,1} & \dots & A_{m,m} \end{pmatrix}.$$

We construct a matrix B whose entries are the average row sums of $A_{i,j}$. This is a generalization of the B matrices we used with equitable partitions (when those row sums were constants). Let \tilde{S} be the $n \times m$ matrix that has a 1 in position i, j if $i \in V_j$ and 0 otherwise. Then $(\tilde{B})_{i,j} = \frac{1}{|V_i|} (\tilde{S}^T A \tilde{S})_{i,j}.$

 $D = \begin{pmatrix} |V_1| & \dots & 0\\ \vdots & \ddots & \vdots \end{pmatrix},$

and let $B = D^{1/2} \tilde{B} D^{-1/2}$. Show that

Exercise 7. Show that

where δ is the minimum degree of G. Start with a partition $V = V_1 \cup V_2$ where V_1 is a largest independent set. Form the matrix B and consider its determinant.

 $\alpha(G) \le n \frac{-\lambda_1 \lambda_n}{\delta^2 - \lambda_1 \lambda_n},$

$$\begin{pmatrix} 0 & \dots & |V_m| \end{pmatrix}$$

the eigenvalues of B interlace with those of A_G .

tition of V. Order the vertice
$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,m} \\ \vdots & & \vdots \end{pmatrix}.$$

1 point

1 point

Chromatic number

The chromatic number of a graph, denoted $\chi(G)$, is the smallest *m* such that there exists a partition $V = V_1 \cup \cdots \cup V_m$ such that all sets V_i are independent sets. We can find both upper and lower bounds on the chromatic number from eigenvalues of the adjacency matrix.

Theorem 2. We have that

 $\chi(G) \le 1 + \lambda_n,$

with equality if and only if G is a complete graph or an odd cycle.

Theorem 3. If G has at least one edge, then we have that

$$\chi(G) \ge 1 - \frac{\lambda_n}{\lambda_1}.$$

Exercise 8. Prove Thm 3. Let $V = V_1 \cup \cdots \cup V_{\chi}$ be an optimal partition into independent 3 points sets. We would like to find a matrix B such that there exists some S so that $B = S^T AS$, but in this case we want λ_n to be an eigenvalue of both A and B. Let \vec{x} be an eigenvector with eigenvalue λ_n . Let \tilde{S} be the matrix that has the value x_i in position i, j if $i \in V_j$ and 0 otherwise.

Prop 3.6.1

Thm 3.6.2