
MATH 395 Spectral Graph Theory Rombach Week 1

Introduction to graphs and matrices

Spectral graph theory lies in the intersection of linear algebra and graph theory. It is a
very broad subject, with applications in different areas of research, such as graph theory (of
course), physics, statistics, computer science, data science,. . . There are too many topics and
applications to fit into one course, and we have flexibility regarding which to cover. So, please
talk to me about your interests!

Graphs

A graph is a pair G(V,E), where V is a set of vertices (nodes) and E ⊆
(
V
2

)
a set of edges

(links). In this course, we will almost always consider graphs to be simple, meaning that they
have no self-loops or multiple edges, and that edges are undirected. Let d(v) indicate the
degree of a vertex v ∈ V (G), i.e. the number of edges that are indicent to it (contain v), or
the number of vertices adjacent to v (that share an edge with v). A path is a graph of the
form P (V,E) with V = {v0, . . . , vk} and E = {v0v1, . . . , vk−1vk}. A cycle is a graph of the
form C(V,E) with V = {v0, . . . , vk} and E = {v0v1, . . . , vk−1vk, v1vk}. We say that a graph
is connected if there exists a path in the graph between any pair of vertices.
We can store/communicate the information contained in a graph by, for example, drawing
the graph, or listing the sets V and E, or maybe as a dictionary that keeps track of the
set of neighbors of each vertex,. . . Here, however, we will focus on ways to store graphs as a
matrix. As it turns out there are many ways to do this, each with their own advantages and
applications.

Incidence matrix

We start with an incidence matrix A, which has a row for each vertex, and a column for each
edge of G. We let Ave = 1 if v ∈ e and Ave = 0 otherwise.
A famous result in graph theory is the so-called Handshake Lemma.

Lemma 1 (Handshake Lemma.). For any graph G, we have

2|E| =
∑
v∈V

d(v).

Exercise 1. Use the incidence matrix of a graph G to prove the Handshake Lemma. 1 point

Exercise 2. As a variation on the incidence matrix, consider the following. For each edge 2 points
e = uv and associated column in the matrix A, instead of putting a 1 in both positions u and
v, set one of them to 1 and one to -1 (this choice is arbitrary, so this matrix is not uniquely
defined). Suppose that a graph G is connected, and consider such an associated matrix A.
Can you describe cycles, forests and spanning trees in G in terms of linear algebra on the
columns of A?

Adjacency matrix

The adjacency matrix M (or often denoted as A) has a row for each vertex and a column for
each vertex of G. We let Muv = 1 if uv ∈ E and Muv = 0 otherwise.
Since we assume that graphs are simple, the adjacency matrix has only real-valued entries
and is symmetric (and Hermitian), i.e. we have M = MT . We will assume a few facts about
symmetric matrices. You may try to prove these as an exercise.
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Theorem 2. Let M be a real, symmetric matrix. Then,

(i) for any eigenvalue µ ofM , its algebraic multiplicity is equal to its geometric multiplicity;

(ii) all eigenvalues of are real;

(iii) if ~x and ~y are eigenvectors of M with distinct eigenvalues λ and µ, respectively, then
~x ⊥ ~y. Therefore, there exists an orthonormal eigenbasis for the columnspan of M .

Exercise 3. Show that if two graphs G1 and G2 are isomorphic (the same under reordering 1 point
of the vertices) then their adjacency matrices M1 and M2 are similar, i.e. find a matrix B
such that B−1M1B = M2.

Exercise 4. Let G and H be two graphs. What can you say about the spectrum of the disjoint 1/2 point
union G ∪H?

Exercise 5. Suppose that G is a k-regular graph. Give one eigenvector and associated eigen- 1/2 point
value of M .

Exercise 6. Show that the eigenvalues of G are bounded by ∆(G) (the maximum degree of 1/2 point
G).

Exercise 7. Think of M as an operator on the set of functions g : V (G) → R (write g as a 1/2 point
column vector of length n such that g(v) = ~gv). For a vertex v, what is (M~g)v?

Exercise 8. What does the matrix M tell us about walks in the graph? Write the follow- 2 points
ing invariants in terms of the matrix M : d(u, v) (distance between two vertices u and v),
mboxecc(v) (the eccentricity of a vertex v: maximum d(u, v) over all u ∈ V ) and diam(G)
(the diameter of the graph: maximum d(u, v) over all u, v ∈ V ).

Exercise 9. One more fact about symmetric matrices is that if µ1, . . . , µk are the unique 2 points
eigenvalues of M , then (M−µ1I)(M−µ2I) . . . (M−µkI) = 0 (this is the minimal polynomial
of M). Use this to show that M l for any l ≥ 0 can be written as a linear combination
of I,M,M2, . . . ,Mk−1. Then, conclude that the number of unique eigenvalues of M must
exceed the diameter of G. What does this tell us about the spectrum of the path graph Pn?

Exercise 10. Find the eigenvalues of the adjacency matrix of Kn, the complete graph on n 1 point
vertices.

Exercise 11. Find the eigenvalues of the adjacency matrix of Kn1,n2, the complete bipartite 2 points
graph with partite sets of order n1 and n2 respectively.

Exercise 12. Find the eigenvalues of the adjacency matrix of Cn, the cycle graph on n 3 points
vertices. Start with a directed cycle (not a symmetric matrix).
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