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Our next goal in the analysis of G(n, p) is to describe the evolution of the sizes of the connected
components. Once these get larger than constant size, the tools we have been using so far fall
short, we first need a few additional tools.

Poisson Distribution

Definition 1. A random variable X has Poisson distribution with mean λ if

P(X = k) =
λke−λ

k!
,

for k = 0, 1, 2, . . .

The next exercise makes it clear why we call the parameter λ the mean of the distribution.

Exercise 1. Show that if X has Poisson distribution with mean λ, then E(X) = var(X) = λ. 2

Poisson distributions have several properties that make them easier to work with than binomial
distributions, and in the case where a binomial distribution (with parameters n and p) has
np � n, they are a good approximation to the binomial. To be more precise, suppose that
Y has a binomial distribution. Let n → ∞, and suppose that p = λ

n , where λ is a constant.
This gives us a constant expected value E(Y ) = λ. We’ll show that in the limit of n, Y has a
Poisson distribution with mean λ. Recall from the first set of notes that(

1− a

n

)n
→ e−a, as n→∞.

We have, for any constant value k,

P(Y = k) =

(
n

k

)
pk(1− p)n−k

=
n!

k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k
=
λk

k!

n!

(n− k)!nk

(
1− λ

n

)n−k
→ λke−λ

k!
, as n→∞,

since we see that

n!

(n− k)!nk
=
n(n− 1) . . . (n− k + 1)

nk
→ 1, as n→∞.

Probability generating functions

Generating functions form a way of encoding sequences and provide a new set of tools to study
and/or manipulate them. They have many powerful applications and if you haven’t seem
them before, I recommend that you read Chapter 10 in Invitation to Discrete Mathematics
by Matoušek and Nešetřil.
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Definition 2. The (ordinary) generating function of a sequence {an}∞n=0 is defined as

fa(s) = a0 + a1s+ a2s
2 + a3s

3 + . . .

Exercise 2. For two sequences {an}∞n=0 and {bn}∞n=0, we define their convolution {cn}∞n=0 1
as the sequence defined by

cn = a0bn + a1bn−1 + · · ·+ anb0.

Show that if {an}∞n=0 has generating function fa(s) and {bn}∞n=0 has generating function fb(s),
then the sequence {cn}∞n=0 has generating function fc(s) = fa(s) · fb(s).

Definition 3. Let X be a nonnegative integer-valued random variable, with probability distri-
bution given by P(X = 0) = p0, P(X = 1) = p1,. . .Then we define the probability generating
function of X as

fX(s) = E(sX) = p0 + p1s+ p2s
2 + p3s

3 + . . .

We will not prove this fact here, but probability generating functions are unique: if two prob-
ability distributions have the same probability generating function then they are the same
distribution.

Exercise 3. Show that fX(0) = p0 and fX(1) = 1. 1

Exercise 4. Show that f ′X(1) = E(X). 1

Exercise 5. Similarly to the previous exercise, can you derive E(X2) from fX(s)? 2

Exercise 6. Show that if two random variables X and Y are independent, then 1

fX+Y (s) = fX(s) · fY (s).

Exercise 7. Use probability generating functions to show that if X is a Poisson random 2
variable with mean λX and Y is a Poisson random variable with mean λY , and X and Y are
independent, then X + Y is a Poisson random variable with mean λX + λY .

Probability generating functions give us a second way to show the Poisson approximation to
the binomial. Let X be a binomial random variable with parameters n and p. First of all, we
see that, for the general binomial distribution, we have

fX(s) =

n∑
k=0

(
n

k

)
pk(1− p)n−ksk = (1− p+ ps)n.

Now, let p = λ/n. Then we have

fX(s) = (1− p+ ps)n =

(
1− λ(1− s)

n

)n
→ e−λ(1−s) = fY (s),

if Y is a Poisson random variable with mean λ. For the next section, we will need a few more
properties of the probability generating function, specifically on the interval [0, 1]. Assume
that X is any nonnegative integer-valued random variable.

Exercise 8. Show that fX(s) is continuous on the interval [0, 1]. 1

Exercise 9. Show that fX(s) is strictly increasing and that f ′X(s) is non-decreasing. 1
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Conditional Expectation

Definition 4. We define the conditional expectation of a random variable X, conditioned on
an event A as

E(X | A) =
∑
x

P(X = x | A).

Exercise 10. Show that for two random variables X and Y we have 1

P(X = k) =
∑
y

P(X = k | Y = y)P(Y = y).

Exercise 11. Show that for two random variables X and Y we have 1

E(X) =
∑
y

E(X | Y = y)P(Y = y).

Branching Process

In this section we will introduce a branching process. This is a type of stochastic process
that can be used to model reproductive or propagation processes, such as the growth of a
population or the spread of disease on a network. In our case, we will use it as a model for
an exploration of a connected component around a starting vertex in G(n, p).
The Galton-Watson branching process is defined as follows. Fix a probability distribution
(p0, p1, p2, . . . ). In our case, we will use a Poisson distribution with mean λ, such that pk =
λke−λ/k! for k = 0, 1, 2, . . . Let Z be a random variable with this distribution. The process is
defined as follows. At level (generation) 0, there is one root vertex. Each level t+ 1 consists
of the children of vertices at level t. Each vertex has a number of children that is distributed
as Z, but that is independent of all other vertices (at any level). You can see an example of
a simulation here: https://youtu.be/na0tu9aK820.

Our aim is to show that when λ ≤ 1, the process eventually dies out with probability 1, and
when λ > 1, the process has a positive probability of survival. Let Xt be the number of
individuals at level t. Note that Xt does not have a Poisson distribution, with the exception
of X1 ∼ Z. We have that Xt is a sum of Xt−1 Poisson random variables, with Xt−1 being
a random variable itself. If we condition on a fixed value of Xt−1, we find E(Xt) by using
linearity of expectation:

E(Xt | Xt−1 = k) = kλ.
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As in Exercise 11, this gives us

E(Xt) =
∞∑
k=0

E(Xt | Xt−1 = k)P(Xt−1 = k) =
∞∑
k=0

kλP(Xt−1 = k) = λE(Xt−1).

We let ηt = P(Xt = 0), and we let η = P(Xt = 0, for some t). In other words, ηt is the
probability that the process has died out by time t, and η is the probability that the process
dies out at some point.

Exercise 12. Show that when λ < 1, we have that η = 1. 1

How does ηt depend on ηt−1? If X1 = k, then we can view the process as a collection of k
processes starting at time 1. The original process going extinct by time t is then equivalent
to all k of these processes going extinct by time t− 1. This gives us that

P(Xt = 0 | X1 = k) = ηkt−1.

We use this to find that

ηt = P(Xt = 0) =
∞∑
k=0

P(Xt = 0 | X1 = k)P(X1 = k) =
∞∑
k=0

ηkt−1P(X1 = k) = fX1(ηt−1),

where we note that X1 ∼ Z has a Poisson distribution with mean λ.
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