
MATH 373 Probabilistic Combinatorics - Rombach Week 4

Threshold for appearance of any constant H in G(n, p)

These notes are following the beginning of Chapter 5 in Frieze & Karoński’s Introduction to
Random Graphs, which is freely available online.

For any complete subgraph Kt, let X be the number of copies of Kt in G(n, p). Then we have

E(X) =

(
n

t

)
p(

t
2) ∼ ntp(

t
2).

This implies that when p � n−t/(
t
2) we have E(X) → 0, which shows (by the first moment

method) that P(X = 0) → 1. When p � n−t/(
t
2), we have E(X) → ∞, and we can use the

second moment method to show that P(X = 0)→ 0.

In the case of complete graphs Kt, everything works as expected. For example, p∗ = n−4/6 is
a threshold for the appearance of K4.

Things get a little more complicated for the appearance of general subgraphs H. Let XH be
the number of copies of H in G(n, p). First of all, H can appear in different ways on the same
set of vertices (unlike Kt). Let a symmetry or automorphism of H be a permutation of the
vertices that preserves edge relations. Let Aut(H) be the set of all such automorphisms. (In
fact, this forms a group, but that is not important here.) If H has nH vertices, then H can
appear on a set of nH vertices in nH !/|Aut(H)| ways. Please verify this for yourself if needed.
This exact number will not end up mattering for the derivation, since it is a constant, but it
gives us an accurate expression for the expected value of XH to start with. We have

E(XH) =

(
n

nH

)
nH !

|Aut(H)|
pmH ∼ nnHpmH ,

where mH is the number of edges of H. Perhaps, just as with the complete graphs, we can
obtain that p∗ = n−nH/mH is a threshold for the appearance of H? This turns out not to be
the case. For example, consider the following graph:

This graph has 6 vertices and 8 edges, so we would expect that a threshold of p∗ = n−6/8

will work. It is true that when p � p∗ we have E(XH) → 0 and P(X = 0) → 1 as usual.
However, note that, for example 4/6 < 5/7 < 6/8. If we set p = 5/7, we have p � p∗, but
also p � n−4/6. This implies that with high probability, G(n, p) has no copies of K4, so it
cannot have any copies of H either (since K4 ⊆ H). The reason that this does not graph does
not work as expected is that its edges are clustered: it is unbalanced. To help gain intuition,
consider the following two graphs, both on 4 vertices and 2 edges. Do you expect that they
have the same threshold of appearance?
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In the following theorem, we’ll show that the appearance threshold of subgraphs depends only
on their densest parts, since this part is the last to appear in G(n, p) (as we increase p). First,
let

d(H) =
mH

nH
.

This looks a lot like edge density, but note that edge density is usually defined as mH

(
nH
2

)−1.
Furthermore, we let

d∗(H) = max
H′⊆H

d(H ′).

We say that a graph H is balanced if d∗(H) = d(H).

Theorem 1. For a fixed graph H with at least one edge, let XH be the number of copies in
G(n, p). We have

P(X = 0)→

{
1, if p� n−1/d

∗(H),

0, if p� n−1/d
∗(H).

Exercise 1. Prove the first part of Theorem 1, for the case p� n−1/d
∗(H). 2

For the second part, we will need to show that when p� n−1/d
∗(H), we have

var(XH)� E(XH)
2. Let

XH = Y1 + · · ·+ Ys,

where s =
(
n
nH

)
nH

|Aut(H)| is the total number of possible copies of H, and each Yi is the indicator
random variable of its appearance.

Exercise 2. Show that we can write 1

var(XH) =

s∑
i=1

s∑
j=1

P(Yi = 1, Yj = 1)− P(Yi = 1)P(Yj = 1).

Exercise 3. Next, show that we can write 2

var(XH) =
∑

H′⊆H,mH′>0

O(n2nH−nH′ (p2mH−mH′ − p2mH )).

Exercise 4. Finish the proof of Theorem 1. 3

Exercise 5. According to Theorem 1, any cycle Ck of constant length k behaves “the same” 3
in terms of the threshold of appearance. Note that this only describes asymptotic behavior and
ignores constants. Perform simulations on a set of values of n, p, k, and describe any observed
differences between cycles of different lengths.

Threshold for appearance of any cycle in G(n, p)

According to Theorem 1, the threshold function for a cycle Ck of constant length k is p∗ = 1
n .

Now, we ask a slightly different question: what is the threshold for the appearance of any
cycle, including long ones, in G(n, p)? It turns out that this also p∗ = 1

n .

Theorem 2. Let X◦ be the number of cycles in G(n, p). Then,

P(X◦ = 0)→

{
1, if p� 1

n ,

0, if p� 1
n .
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Exercise 6. Show that 1

E(X◦) =
n∑
k=3

(
n

k

)
(k − 1)!

2
pk.

Exercise 7. Show that 1

E(X◦) ≤
n∑
k=3

nkpk.

Exercise 8. Prove the first part of Theorem 2, for the case when p� 1
n . 1

Estimating the variance of X◦ is trickier, but we will use a different trick for the second part.
When p = 1

n , the expected number of edges in G(n, p) is around n/2. Note that when a graph
has ≥ n edges, it must have a cycle. If we let p = 2+ε

n for ε > 0, then the expected number
of edges is around (1 + ε/2)n.

Exercise 9. Prove the second part of Theorem 2, for the case when p � 1
n . Note that you 1

can actually prove a stronger statement here.
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Solutions to Selected Exercises

Exercise 1. Prove the first part of Theorem 1, for the case p� n−1/d
∗(H).

Let H∗ ⊆ H be a subgraph of H such that d(H∗) = d∗(H). Let

p� n−1/d
∗(H) = n−nH∗/mH∗ .

We have
E(XH∗) ∼ nnH∗pmH∗ → 0.

By the first moment method, this implies that P(XH∗ = 0)→ 1. When a graph has no copies
of H∗ it also cannot have any copies of H (since H∗ ⊆ H), and therefore P(XH = 0)→ 1.

Exercise 4. Finish the proof of Theorem 1.

We have

var(XH) =
∑

H′⊆H,mH′>0

O(n2nH−nH′ (p2mH−mH′ − p2mH ))

=
∑

H′⊆H,mH′>0

O(n2nH−nH′p2mH−mH′ )

= n2nHp2mH
∑

H′⊆H,mH′>0

O(n−nH′p−mH′ )

= E(XH)
2

∑
H′⊆H,mH′>0

O(n−nH′p−mH′ )

For our result to work, we therefore need that∑
H′⊆H,mH′>0

O(n−nH′p−mH′ )→ 0. (1)

Let p = ωp∗ = ωn−1/d
∗(H), where ω →∞. We can write

n−nH′p−mH′ =
n

mH′
d∗(H)

−nH′

ωmH′
.

By the definition of d∗(H), we have that for any H ′ ⊆ H
1

d∗(H)
≤ nH′

mH′
,

and therefore
1

d∗(H)
− nH′

mH′
≤ 0 ⇔ mH′

d∗(H)
− nH′ ≤ 0.

Therefore,
n

mH′
d∗(H)

−nH′

ωmH′
= O

(
1

ωmH′

)
→ 0.

We are not quite done yet. We still need to sum the above over all subgraphs H ′ ⊆ H. Since
there are only a constant number of such subgraphs, we obtain the result in 1, and concludde
that var(XH)� E(XH)

2 and therefore P(XH = 0)→ 0.

Exercise 8. Prove the first part of Theorem 2, for the case when p� 1
n .

Exercise 9. Prove the second part of Theorem 2, for the case when p � 1
n . Note that you

can actually prove a stronger statement here.
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