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Harris-FKG Inequalities

Consider a random red/blue coloring of the edges of Kn. Intuitively, the event that we have
a red K3 and the event that we have a red C5 should be positively correlated, since they both
occur when there are more red edges. It is not obvious how to make such intuition precise,
however, since one is not a subgraph of the other. This is exactly what the Harris-FKG
inequalities are for.
Suppose that Ω = {0, 1}n, and each coordinate is assigned independently. In other words, we
have a set of independent Bernoulli random variables X1, . . . , X2. For example, this occurs
when we apply a uniform independent random 2-coloring of vertices or edges, or when we
assign edges independently in G(n, p).
Define a partial order on the elements of Ω as follows: (x1, . . . , xn) ≥ (y1, . . . , yn) if and only
if xi ≥ yi for all 1 ≤ i ≤ n.
We say that an event A ⊆ Ω is increasing if x ∈ A and y ≥ x implies that y ∈ A. We say that
an event A ⊆ Ω is decreasing if x ∈ A and y ≤ x implies that y ∈ A. Then, Harris’ Inequality
says that events are positively correlated if they go in the same direction (are both increasing
or both decreasing).

Theorem 1 (Harris). In the above setting, if A and B are increasing events, then

P(A ∩B) ≥ P(A)P(B).

The above setting will be the most commonly used in discrete problems, but we will state
and prove a more general version of Theorem 1. This is sometimes attributed to Fortuin,
Kasteleyn and Ginibre, who independently proved this result in a more general setting. Hence,
it is commonly referred to as the Harris-FKG inequality.
Let Ω = Ω1×Ω2× · · · ×Ωn be our sample space, and suppose that we have a linear ordering
on each Ωi. Again, for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Ω, we say that x ≥ y if and only
if xi ≥ yi for all 1 ≤ i ≤ n. We say that a function f : Ω → R is increasing if x ≥ y implies
f(x) ≥ f(y).

Theorem 2 (Harris). If f and g are increasing functions of independent random variables,
then

E(fg) ≥ E(f)E(g).

Proof. We will use induction on n. Let n = 1. Note that for any x, y ∈ Ω1, we have that
f(x)− f(y) and g(x)− g(y) have the same sign. Therefore,

E((f(x)− f(y))(g(x)− g(y))) = 2E(fg)− 2E(f)E(g) ≥ 0,

which implies the result.

Exercise 1. Show the the first equality above. 1

Suppose that n ≥ 2, and define

f1(y1) = E(f | x1 = y1) = E(f(y1, x2, . . . , xn))

g1(y1) = E(g | x1 = y1) = E(g(y1, x2, . . . , xn))

(fg)1(y1) = E(fg | x1 = y1) = E((fg)(y1, x2, . . . , xn)).
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For a fixed y1, the functions f(y1, x2, . . . , xn), g(y1, x2, . . . , xn) and (fg)(y1, x2, . . . , xn) are
increasing functions in n− 1 variables, so by the inductive hypothesis, we have

(fg)1(y1) ≥ f1(y1)g1(y1).

Also note that f1 and g1 are increasing functions in one variable, and therefore

E(f1g1) ≥ E(f1)E(g1)

Therefore,
E(fg) = E((fg)1) ≥ E(f1g1) ≥ E(f1)E(g1) = E(f)E(g).

Exercise 2. Use the Harris-FKG bound to bound (from below) the probability that G(n, p) is 3
triangle-free. One way to bound this probability is as follows:

P(G(n, p) is triangle-free) ≥ P(G(n, p) is empty) = (1− p)(
n
2).

Compare this bound to your Harris-FKG bound.

Janson’s Inequalities

Assume a probability space where a random subset is chosen from [n], with each element
included independently of other elements. (They need not have the same probability of being
included.) Let S1, . . . , St ⊆ [n] be a set of subsets, let Ai be the event that all the elements
of Si are chosen and let Xi be the indicator random variable of Ai. Let X =

∑t
i=1Xi. Then

we have the following upper bound on the probability that none of the events happen.

Theorem 3 (Janson). With the definition of X given above, we have

P(X = 0) ≤ e−µ+∆/2,

where µ = E(X) and
∆ =

∑
i 6=j | Si∩Sj 6=∅

P(Ai ∩Aj)

Proof. (This proof follows Yufei Zhao’s notes.) First we let

pi = P(Ai | A1 ∩ . . . Ai−1).

Exercise 3. Show that 1
P(X = 0) ≤ e−

∑t
i=1 pi .

First, we will show that

pi ≥ P(Ai)−
∑

j<i | Si∩Sj 6=∅

P(Ai ∩Aj).

Let
B =

⋂
j<i | Si∩Sj=∅
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and
C =

⋂
j<i | Si∩Sj 6=∅

.

Then

pi = P(Ai | B ∩ C)

=
P(Ai ∩B ∩ C)

P(B ∩ C)

≥ P(Ai ∩B ∩ C)

P(B)

= P(Ai ∩ C | B)

= P(Ai | B)− P(Ai ∩ C | B).

Exercise 4. Finish the proof. 2
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