
MATH 373 Probabilistic Combinatorics - Rombach Week 12

Lovász Local Lemma

In many of the existence proofs that we’ve looked at so far in this course, our problem was of
the form: we have set of “bad” events and we would like to show that with nonzero probability,
no bad events happen. The nonzero probability then proves that it is possible for no bad events
to happen, i.e. there is a configuration of our model that avoids any bad events. For example:
there is a vertex coloring in our graph that avoids monochromatic edges, or there is an edge
coloring of Kn that avoids monochromatic subgraphs, etc...

First, we need a slightly more refined definition of independence; one that applies to sets of
events rather than just pairs.

Definition 1. We say that an event A is mutually independent of a set of events S, if

P(A) = P(A | T ),

where T ⊆ {B | B ∈ S or B ∈ S}.

Note that mutual independence is not the same as pairwise independence. For example, flip
a coin twice and let A be the event that the first and second outcome are the same, and let
H1, H2 be the events that the coin lands “heads” the first and second time, respectively. Then
A is independent of H1 and also of H2, but it is not independent of the set {H1, H2}.

Suppose that A1, . . . , An is a set of bad events, and let pi = P(Ai). If the events are mutually
independent, we have

P

(
n⋂

i=1

Ai

)
=

n∏
i=1

(1− pi).

As long as pi < 1 for 1 ≤ i ≤ n, we are guaranteed that the probability of no bad events is
nonzero. If there is some dependence between the events, then we can use the union bound
to obtain

P

(
n⋂

i=1

Ai

)
≥ 1−

n∑
i=1

pi,

but this will only give us a useful bound if the probabilities of bad events are very small. The
problem here is that the union bound, in a sense, assumes the “worst possible” dependence:
we get the highest possible probability of any bad event if the bad events are disjoint. In most
cases, this is far from true. In fact, we often have a situation where there is some dependence
between the bad events, but most events Ai are still mutually independent of a large set of
other events. We capture this in a dependency (di)graph D. Let V (D) = [n], and let the
edges be such that Ai is mutually independent of the set {Aj | (i, j) /∈ E(D)}. Note that this
graph is not unique, not even if we assume that it is edge-minimal. For example, in the coin
flip game mentioned earlier, A could have an edge to either H1 or H2 in a valid dependency
graph. Now we are ready to state the two most commonly versions of Lovász Local Lemma.
The first one, the general version, is more general and powerful, but much trickier to work
with. The second one, the symmetric version, works well when there is some symmetry among
the events, and is easier much easier to apply.
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Lemma 2 (Lovász Local Lemma (general)). Let A1, . . . , An be events and let D be an asso-
ciated dependency graph. If there exist a set of real numbers x1, . . . , xn ∈ [0, 1) such that

P(Ai) ≤ xi
∏

(i,j)∈E(D)

(1− xj),

then

P

(
n⋂

i=1

Ai

)
≥

n∏
i=1

(1− xi) > 0.

Lemma 3 (Lovász Local Lemma (symmetric)). Let A1, A2, . . . , An be a set of bad events and
D an associated dependency graph. If P(Ai) ≤ p and dD(Ai) ≤ d for 1 ≤ i ≤ n, and if

ep(d+ 1) ≤ 1,

then

P

(
n⋂

i=1

Ai

)
> 0.

Hypergraph proper 2-coloring

Let H be a k-uniform hypergraph. At the beginning of this course, we used the first moment
method to show that if H has at most 2k−1 edges, then it admits a proper 2-coloring of its
vertices, i.e. a coloring with no monochromatic edges. Now, we will strengthen this result to
one that does not depend on the number of edges of H, but rather on how much overlap is
allowed among them.

Exercise 1. Use the symmetric version of Lovász Local Lemma to show that if every edge in 3
H shares a vertex with at most 1

e2
k−1 − 1 other edges, then H has a proper 2-coloring.

Ramsey numbers

Now, we will look at the Ramsey number R(3, s). This is the smallest number n such that
any red/blue coloring of the edges of Kn gives rise to a red copy of K3 or a blue copy of Ks.

Exercise 2. Show that if there exist real numbers p, x, y ∈ [0, 1) such that 3

p3 ≤ x(1− x)3n(1− y)(
n
s)

and
(1− p)k ≤ y(1− x)(

s
2)n(1− y)(

n
s),

then R(3, s) > n.

Exercise 3. Find an explicit lower bound for R(3, s). 3
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Proof of the general LLL

Proof. The idea is to show that conditioning on a set of events Aj for j ∈ S does not increase
the probability of an event Ai for i /∈ S too much. More precisely, we want to show that

P

Ai |
⋂
j∈S

Aj

 ≤ xi,

for S ⊆ [n] and i /∈ S. We will use induction on |S|. When |S| = 0, we have

P(Ai) ≤ xi
∏

(i,j)∈E(D)

(1− xj) ≤ xi.

Now, we split S into two sets: X = S ∩ND(i) and Y = S \X. This gives us

P

Ai |
⋂
j∈S

Aj

 =
P
(
Ai
⋂

j∈X Aj |
⋂

j∈Y Aj

)
P
(⋂

j∈X Aj |
⋂

j∈Y Aj

) .

For the numerator, we have that

P

Ai

⋂
j∈X

Aj |
⋂
j∈Y

Aj

 ≤ P

Ai |
⋂
j∈Y

Aj

 ≤ P(Ai) ≤ xi
∏

(i,j)∈E(D)

(1− xj). (1)

Let X = j1, j2, . . . .For the denominator, we have

P

⋂
j∈X

Aj |
⋂
j∈Y

Aj

 = P

Aj1 |
⋂
j∈Y

Aj

P

Aj2 | Aj1

⋂
j∈Y

Aj

 . . .

≥
∏
j∈X

(1− xj),

by the inductive hypothesis. This completes the proof that

P

Ai |
⋂
j∈S

Aj

 ≤ xi.

Finally, we observe that

P

(
n⋂

i=1

Ai

)
= P

(
A1

)
P
(
A2 | A1

)
P
(
A3 | A1 ∩A2

)
. . .P

(
An | ∩n−1i=1 Ai

)
≥

n∏
i=1

(1− xi).

The following Corollary is sometimes an easy way to apply the general LLL.

Corollary 4. If P(Ai) < 1/2 and
∑

j∈ND(i) P(Aj) ≤ 1/4, for all i, then

P

(
n⋂

i=1

Ai

)
> 0.

Exercise 4. Prove Corollary 4. 3
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Lopsided LLL

Notice that in the proof above, the only time that we needed the dependency digraph, was
when we required

P

Ai |
⋂
j∈Y

Aj

 ≤ P(Ai),

in equation 1. Note that this is weaker than what we initially used to define the dependency
graph, since we asked for strict equality then. This immediately implies a stronger version of
the local lemma, which we obtain by weakening the constraint on the dependency graph. The
idea behind this lopsided version is that at first, we wanted to rule out dependence between
the bad events, since dependence might decrease the probability of having no bad events com-
pared to when they are independent. However, dependence does not always imply this. The
positive correlation implied by the inequality above actually increases the probability of no
bad events compared to the independent case, and can therefore be treated as independence
for the sake of the lemma.

As an example of an application of the lopsided version of this Lemma, we will consider
the probability that a random permutation (chosen uniformly from all permutations on n
elements), is a derangement : a permutation without fixed points. We’ll write this in the
language of graph theory. Let Kn,n be a complete bipartite graph on partite sets {v1, . . . , vn}
and {w1, . . . , wn}. Let M be a perfect matching sampled uniformly at random from all perfect
matchings. Note that such perfect matchings are in bijection with the permutations on [n].
For any edge viwi, we let Ai be the event that it is included in M . It is not so hard to see
that P(Ai) = 1/n. If the events were independent (which they are not), this would give us
P(∩ni=1Ai) = (1− 1/n)n = 1/e+ o(1). The (lopsided) LLL will give us this lower bound, and
as it turns out, this is the true probability. We will need the following Theorem:

Theorem 5. Let M0,M1, . . . ,Mk be (not necessarily perfect) matchings in Kn,n, such that
no edge in M0 shares a vertex with an edge in any of M1, . . . ,Mk. Let Bi be the event that
Mi ⊆M . Then, we have

P

(
A0 |

k⋂
i=1

Bi

)
≤ P(A0).

Exercise 5. Show that Theorem 5 implies the lower bound of 1/e + o(1) on the probability 2
that M is a derangement.

Exercise 6. Prove Theorem 5. (Not very easy. Combinatorics grad students should try.) 5
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