MATH 373 PROBABILISTIC COMBINATORICS - ROMBACH WEEK 10

Discrete Dynamical Systems

We won’t spend a lot of time in this class talking about dynamical systems and Markov
Processes since they are mostly outside of the scope, but we will use it as a tool for looking
at a simple random walk on a graph.

A (linear) discrete dynamical system takes the form

Z(t) = AZ(t — 1), with some initial condition #(0) = Zj.

We can write this as a direct formula

We define a Markov chain on (finitely many) states S = {1,2,...,n} as a process that starts
in some state and moves to another state (or stays put) at each discrete time step. So, at
each time step ¢, we have a random variable X; which represents the state of the process at
time t. A Markov process is time-homogeneous and memoryless. This means that the random
variables X1, Xo, ... are identically distributed, and that at each time step, the probability
distribution of the next step of the system depends only on the current state, i.e.

P(Xip1 = k| Xy =21,..., Xy = 2¢) = P(Xy 1 = k| Xy = 2y).
We call these the transition probabilities:
pji = P(X¢11 = j| Xy = i),

which we can represent in a n x n transition matrix.

Let an i, j-path be a path ¢ —¢; — 42 — ... — 7, such that p;;, Diyi, ... > 0. We say that ¢
and j communicate if there exist both an ¢, j-path and a j,i-path. Since communicating is
an equivalence relation on the states, this gives us a partition into classes. If all states are in
one class, we call the Markov chain #rreducible or ergodic. We say that a transition matrix is
positive if all its entries are positive (i.e. not 0). We say that a transition matrix is regular if
the matrix M? is positive for some integer ¢.

Exercise 1. Show that an ergodic Markov Process does not imply that the transition matrix
s reqular.

We call Z a distribution vector if it has nonnegative elements that add up to 1. We then have
the following result.

Exercise 2. Show if A is a transition matriz and ¥ is a distribution vector, then AT is a
distribution vector. In fact, the transformation A always preserves the sum of elements of a
vector.

Exercise 3. Show that if x; represents the distribution of probabilities of Xy taking values in
{1,2,...,n}, then 111 = AZy represents the distribution of probabilities of X411 taking values
in{1,2,...,n}.

Exercise 4. Show that an ergodic Markov Process does not imply that the transition matric
s reqular.
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We will use the following Theorem (without proof).

Theorem 1. If A is a reqular n X n transition matriz, then A has exactly one distribution
eigenvector & with eigenvalue 1, meaning that AX = Z. This is called the equilibrium distri-
bution of A, and denoted by ZTeqy-

For any starting distribution Ty, we have

lim ATy = Tequ.
t—o00

Number of returns in a random walk on a finite graph

The following example and proof are taken from Bollobas’ Modern Graph Theory. We've
spent some time thinking about Markov chains on a finite set of states, which can be thought
of as random walks on a finite graph. Now we’ll look in more detail at the very basic case
where a walker is on a finite, simple, undirected graph G(V,E). The walker starts at a
starting vertex vg € V(G), and at each time step, they move from their current vertex v to
a neighboring vertex of v, choosing one uniformly from the set I'(v) (the neighborhood of v).
For example, the following graph G has the transition matrix M:

1 G
11
3 4 I
2 _[2 03
Mo
00 10

Exercise 5. Show that if G is a connected and non-bipartite graph, then its associated tran-
sition matriz A is regqular.

Exercise 6. Show that when G is a connected and non-bipartite graph, then

d(1)
L1 | d2)
T = o : ,
d(n)

where m = |E(G)| is the equilibrium vector of the random walk on G.

Exercise 7. Let Zequi be the distribution of Xy. Instead of considering the next vertex visited,
let pe be the probability that e is the next edge traversed, for any e € E(G). Find this
distribution of probabilities over the edge set of G.

Exercise 8. Let X be a random variable and a a constant. Show that var(aX) = a® var(X).

Exercise 9. Let G be an undirected non-bipartite graph with vy € V(G) and let Sy indicate
the number of returns to vo of a random walk that starts at vy and runs for k steps. Show
that the random variable Si/k concentrates around its mean, i.e. that its var(Si/k) — 0 as
k — oo.




