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Useful Inequalities (for the whole semester)
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Probability primer

The following definitions are likely more formal than you will need, so don’t worry if you have
never seen the word “sigma-algebra”. There is a list of important take-aways after the formal
definitions.
A sample space is a set of elements that we call outcomes. An event is a subset A ⊆ Ω.
The event space F is a sigma-algebra: a collection of subsets F ⊆ 2Ω that includes Ω, is
closed under taking complements and countable unions. For our purposes it is fine to assume
F = 2Ω. A probability measure is a function P : F → [0, 1], such that P(Ω) = 1, and P is
countable additive, meaning that P(

⋃∞
i=1Ai) =

∑∞
i=1 P(Ai), for disjoint events A1, A2, . . ..

Now, a probability space is a triple (Ω,F ,P).

A random variable is a measurable function X : Ω → S, where S is the state space of X.
We will always deal with S ⊆ R, and most of the time we will deal with discrete nonnegative
random variables, such that S ⊆ N0. We use the notation P(X ∈ B) = P({ω ∈ Ω | X(ω) ∈
B}). (Note that in that expression B ⊆ R.) We let IA be an indicator random variable for
the event A. This means that

IA =

{
1, if A occurs
0, otherwise.

In the case of a discrete random variable, we define the expectation of X as

E(X) =
∑
x∈S

xP(X = x).

We say that two events A1 and A2 are independent if

P(A1 ∩A2) = P(A1)P(A2).
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In order to understand this idea more intuitively, we need the following definition. We let

P(A1|A2) =
P(A1 ∩A2)

P(A2)
.

The conditional probability P(A1|A2) indicates the probability of event A1 under the assump-
tion of A2. Another way of thinking about conditional probabilities is the following: we
assume that P(A2) = 1 and therefore P(ω) = 0 for any ω /∈ A2. We then obtain a new
probability measure by scaling P(ω) by 1/P(A2) for each ω ∈ A2 so that our total probability
remains 1. Now, we see that two events A1 and A2 are independent if and only if

P(A1|A2) = P(A1).

In other words, the events A1 and A2 are independent if knowledge of one event does not
yield information about the probability of the other.
Similarly, for random variables X,Y , we say that X and Y are independent if

P(X = x, Y = y) = P(X = x)(Y = y), for all x, y.

Exercise 1. Write a short overview for yourself of the above definitions: which objects are 1
sets, which are functions?

Exercise 2. Two sets A1 and A2 may be disjoint (or not) and they may be independent (or 1
not). Note that these are different, but often confused, concepts. How do they relate to one
another?

The following bound is often useful when we want to bound the probability of at least one
event in a set of events that all have small probability, and where we do not know their
interactions.

Lemma 1. [Union bound] P(
⋃∞

i=1Ai) ≤
∑∞

i=1 P(Ai).

Exercise 3. Prove Lemma 1. 1

We will use the following Lemma very often; it is one of the reasons that first-moment method
proofs are usually surprisingly straight-forward.

Lemma 2. We have linearity of expectation:

E

(∑
i

Xi

)
=
∑
i

E(Xi),

whether the events Xi are dependent or not.

Exercise 4. Prove Lemma 2. 1

Before we get into more complicated first-moment lemmas, we make a simple observation:

Proposition 3. We have

P(X ≤ E(X)) > 0,

P(X ≥ E(X)) > 0.
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Exercise 5. Prove Proposition 3. 1

This simple observation gives us a powerful method of proving the existence of structures
without finding explicit constructions. If X(G) is an invariant of, for example, graphs, and we
sample graphs from some distribution, then we immediately know that graphs withX ≥ E(X)
as well as graphs with X ≤ E(X) exist.

Lemma 4 (Markov’s inequality). For a non-negative random variable, we have

P(X ≥ t) ≤ E(X)

t
.

Proof. We have

X = X · IX≥t +X · IX<t ≥ X · IX≥t ≥ t · IX≥t.

Since E(IA) = P(A), we have

E(X) ≥ E(t · IX≥t) = t · E(IX≥t) = t · P(X ≥ t).

Thus,

P(X ≥ t) ≤ E(X)

t
.

Exercise 6. Where in the proof of Lemma 4 did we use the fact that X is nonnegative? 1

Lemma 5 (First moment method). For a non-negative, integer-valued random variable, we
have

P(X > 0) ≤ E(X).

Exercise 7. Prove Lemma 5. 1

Application: Hypergraph coloring

A hypergraph is a generalization of a graph in which edges can join more than two vertices.
More concretely, a hypergraph is a graph (V,E) in which the edge set E is a collection of any
non-empty subsets of V . A k-uniform hypergraph is a hypergraph in which every e ∈ E has
|e| = k.

A hypergraph is 2-colorable if the vertices can be colored red/blue such that no edge is
monochromatic.

Lemma 6. All k-uniform hypergraphs on ≤ 2k−1 edges are 2-colorable, for k ≥ 2.

Proof. Suppose we color the vertices of a k-uniform hypergraph red/blue uniformly and i.i.d.
Then the probability an edge is monochrome red is 2−k and so the probability the edge is
monochrome is 21−k since there are two possible colors.
There are |E| edges in total, so the expected number of monochromatic edges is

E(X) = |E| P(e is monochrome) =
|E|

2k−1
.
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Suppose that |E| = 2k−1 so that E(X) = 1. We claim that P(X = 0) > 0 (implying that there
must exist a coloring where no edge is monochrome). Suppose that P(X = 0) = 0. Because
X is a non-negative integer valued random variable, this implies that X is constant and equal
to 1. We know that this is not true, because there is an obvious coloring that achieves more
than one monochrome edge (color all vertices blue). Therefore, P(X = 0) = 0 is not possible.
We conclude that all k-uniform hypergraphs on ≤ 2k−1 edges are 2-colorable.

Application: Ramsey Theory

Let G = (V,E) be a graph, and let n = |V | be the number of vertices in G. A k-edge-coloring
of a graph is a coloring that uses k colors. We wish to find the largest n s.t. there exists a
2-edge coloring such that G contains no monochromatic Ks.

Exercise 8. Show that R(s, s) > n if
(
n
s

)
21−(s2) ≤ 1. 1

Exercise 9. Use the inequalities at the start of the document to prove that R(s, s) > b2s/2c. 2

Application: edge cuts

We let G = (V,E) be a graph, with vertex set V and edge set E ∈
(
V
2

)
. For a subset S ⊆ V ,

we let [S, S] denote the set of edges that have one endpoint in S and one endpoint in S = V \S.
We use the probabilistic method to prove the following proposition.

Proposition 7. For any graph G, there exists a subset S ⊆ V (G) such that

|[S, S]| ≥ |E|
2
.

Exercise 10. Prove Proposition 7. 1

Exercise 11. Can you improve on Proposition 7 by sampling S differently? 2

Application: MAX-k-SAT

The MAX-k-SAT problem refers to the problem of determining the maximum number of
clauses that can be satisfied in a Boolean formula in conjunctive normal form, where each
clause has exactly k literals. A boolean formula is in conjunctive normal form (CNF) if it
consists of a number of clauses joined by conjunctions (logical AND), and terms within the
clauses are joined by disjunctions (logical OR). Example:

Φ = (x1 ∨ x2 ∨ x5) ∧ (x3 ∨ x4 ∨ x2)

is in conjunctive normal form. Such a formula is satisfied by an assignment of truth values
{0, 1} to the literals makes the entire statement (Φ) true. One question we might ask is:
What is the maximum number of clauses we can satisfy?

Exercise 12. Show that in the MAX-k-SAT problem there always exists an assignment of 1
variables that satisfies 2k−1

2k
of clauses.
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Solutions to Selected Exercises

Exercise 2. Two sets A1 and A2 may be disjoint (or not) and they may be independent (or
not). Note that these are different, but often confused, concepts. How do they relate to one
another?

If two events A1 and A2 are disjoint (and assuming they both have nonzero probability), then
they must be dependent, since this implies that P(A1|A2) = P(A2|A1) = 0. If two events
are independent, this implies that, in a sense, A1 is represented in A2 as it is in Ω, and vice
versa. In other words, the proportion of probability in A2 that is also in A1 is the same
as the proportion of total probability taken up by A1. I like to use the following sketch of
independent events. (It’s just a sketch and it assumes probability proportional to area.)

Exercise 3. Prove Lemma 1.

I may have written this on the board as a finite union instead of the infinite one in the notes,
so let’s prove both. The proof below for the infinite case works easily for the finite one as
well, but the finite case can be proved using methods that some of you might be more familiar
with.

Lemma 1 (Union bound). P(
⋃n

i=1Ai) ≤
∑n

i=1 P(Ai).

Proof. First, consider P(A ∪ B). The events, A,B may not be disjoint, but we can rewrite
A ∪B as a union of disjoint events as follows:

A ∪B = (A \B) ∪ (A ∩B) ∪ (B \A).

Then, by the properties of probability functions, we have

P(A ∪B) = P(A \B) + P(B \A) + P(A ∩B).

Furthermore, since A = (A \B) ∪ (A ∩B) (and similarly for B), we have that

P(A) + P(B) = P(A \B) + P(B \A) + 2P(A ∩B).

Since probabilities are always nonnegative, this gives the result that

P(A ∪B) = P(A) + P(B)− P(A ∩B) ≤ P(A) + P(B).

(Note how similar the above statement is to facts about set cardinalities that you are likely
familiar with.) To generalize this to a union over n events, we can use induction. Suppose
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that the result holds for up to n− 1 events. Then, we let B =
⋃n−1

i=1 Ai, to see that

P(
n⋃

i=1

Ai) = P(B ∪An)

≤ P(B) + P(An)

= P(
n−1⋃
i=1

Ai) + P(An)

≤
n−1∑
i=1

P(Ai) + P(An)

=
n∑

i=1

P(Ai)

Note that we use the inductive hypothesis twice here.

Now, for the infinite case, we use a less obvious relabelling trick.

Lemma 1 (Union bound). P(
⋃∞

i=1Ai) ≤
∑∞

i=1 P(Ai).

Proof. For each i, we let Bi = Ai \
⋃i−1

j=1Aj . Note that all the events Bi are disjoint, that⋃∞
i=1Ai =

⋃∞
i=1Bi, and that Bi ⊆ Ai for each i. The latter implies that P(Bi) ≤ P(Ai) for

all i. Then

P(
∞⋃
i=1

Ai) = P(
∞⋃
i=1

Bi)

=
∞∑
i=1

P(Bi)

≤
∞∑
i=1

P(Ai).

Exercise 5. Prove Proposition 3.

Proposition 3. We have

P(X ≤ E(X)) > 0,

P(X ≥ E(X)) > 0.

Proof. The two parts are very similar, so we’ll only do the first one. We’ll work by contra-
diction. Suppose (for the sake of contradiction) that P(X ≤ E(X)) = 0. Let S be the set of
values that X can take. Then we have x > E(X) for all x ∈ S. This gives

E(X) =
∑
x∈S

xP(X = x)

>
∑
x∈S

E(X)P(X = x)

= E(X)
∑
x∈S

P(X = x)

= E(X),
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which is clearly a contradiction.

Exercise 6. Where in the proof of Lemma 4 did we use the fact that X is nonnegative?

We use it in this step:
X · IX≥t +X · IX<t ≥ X · IX≥t,

which is only valid because
X · IX<t ≥ 0.

Exercise 7. Prove Lemma 5.

Lemma 5 (First moment method). For a non-negative, integer-valued random variable, we
have

P(X > 0) ≤ E(X).

Proof. Note that if X is non-negative and integer-valued, we have that X > 0 is equivalent
to X ≥ 1. Then we apply Lemma 4 with t = 1.

Exercise 8. Show that R(s, s) > n if
(
n
s

)
21−(s2) ≤ 1.

Fix n and color the edges of Kn red/blue with equal probability, independently from each
other. For any R ⊆ V of size s let AR to be the event that R induces a monotone Ks. The
probability that R is monochrome red (or, respectively, blue) is 2−(s2), so the probability that
R is monochrome is 21−(s2). Therefore,

P(AR) = 21−(s2).

Let X be the number of monochrome copies of Ks in Kn. Then

E(X) =
∑
R

E(IAR
) =

(
n

s

)
21−(s2)

as there are
(
n
s

)
possible subsets of vertices which have size s. If E(X) < 1 then we have

P(X = 0) > 0 by the FMM, which shows that there exists a coloring with no monochromatic
Ks. Therefore, R(s, s) > n if (

n

s

)
21−(s2) ≤ 1.

Exercise 9. Use the inequalities at the start of the document to prove that R(s, s) > b2s/2c.

Without hints, this one is very tricky! We can rewrite(
n

s

)
21−(s2) <

ns

s!
· 21+s/2

2s2/2
<

21+s/2

s!
· ns

2s2/2
≤ 1.

Note that for s = 2, this question is not very interesting (clearly, R(2, 2) = 2). When s ≥ 3,
we have that 21+s/2

s! < 1. Therefore, we achieve the above inequality when ns

2s
2/2
≤ 1. This

works when n = b2s/2c.

Exercise 11. Can you improve on Proposition 7 by sampling S differently?
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One way to do this is to note that when we distribute vertices equally over two sets, the
number of pairs that span the two sets is greater than the numner of pairs within sets. Let’s
sample S randomly, by choosing a set S of exactly bn/2c vertices uniformly over all such sets.
Let X be the size of the cut [S, S]. This gives, depending on whether n is even or odd,

E(X) = |E| · bn/2c · dn/2e(
n
2

) =

{
|E| · k

2k−2 , if n = 2k,

|E| · k
2k−1 , if n = 2k − 1.

In both cases this improves slightly on the bound |E| · 1
2 .

Exercise 12. Show that in the MAX-k-SAT problem there always exists an assignment of
variables that satisfies 2k−1

2k
of clauses.

Consider random assignments of values to the literals such that xi is True/False with equal
probability, independently of other literals. Now consider the first clause, c1. There are 2k

ways to assign truth values to the k literals in the clause, and there is only one of all possible
assignments such that c1 is not satisfied (when all of its literals evaluate to false). This applies
the same to all clauses. Therefore, we have P(ci) = 2k−1

2k
, for all i. By linearity of expectation,

this implies that the expected number of clauses that is satisfied is a proportion 2k−1
2k

of them,
and therefore there must exist some assignment that achieves at least this number.
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