Flows in graphs

The min-cut max-flow theorem is a powerful culmination of various topics we have seen so far: Hall's, König's, and Menger's Theorems all are really special cases of the min-cut max-flow idea.
We will consider directed graphs for this topics: simple graphs in which every edge has a direction. We denote $x y$ for an edge $x \rightarrow y$. The direction of the edge does not imply anything about which direction flows are possible, it is only a label to help distinguish the directions. Furthermore, suppose that our graph has two special vertices, a source s, and a $\operatorname{sink} t$.

We define a flow as a function $f: E(G) \rightarrow \mathbb{N}$. We let $f(v, S)=\sum_{w \in S} f(v, w)$ for any $v \in V$ and $S \subseteq V$. Furthermore, we let the capacity be a function $c: E(G) \rightarrow \mathbb{N}_{\geq 0}$.

- $f(x, y) \leq c(x, y)$ for all $(x, y) \in E(G)$,
- $f(x, y)=-f(y, x)$ for all $(x, y) \in E(G)$,
- $f(V, s)=f(t, V)=0$,
- $f(V, v)=f(v, V)$ for all $v \in V(G) \backslash\{s, t\}$.

Let the value of the flow be $f(s, V)=f(V, t)$. (It should be easy to see that this equality holds.)

We are interested in edge cuts $[S, \bar{S}]$ such that $s \in S$ and $t \in \bar{S}$, since those are cuts that stop all possible flow from the source to the sink. We let the capacity of a cut be defined as

$$
c(S)=\sum_{v w \in[S, \bar{S}]} c(v w)
$$

Note the directedness in this definition: we are only counting the capacity of edges from S to \bar{S}.

Theorem 1 (Ford-Fulkerson). The maximum possible value of a flow is equal to the minimum capacity of a cut.

Exercise 1. Show that the Ford-Fulkerson algorithm terminates if the capacities and flows take rational values.

Exercise 2. Suppose that all edges have capacity 1 (in both directions). What can you say about the run time of the FF algorithm?

Exercise 3. Can you generalize the min-cut max-flow result to networks that have multiple sources and sinks?

Exercise 4. Use min-cut max-flow to prove Hall's, König's, and Menger's Theorems.

SageMath

Exercise 5. Use Sage to find an example of a triangle-free graph that has edge connectivity greater than its vertex connectivity. Include the code that you used.

Exercise 6. Use Sage to form a conjecture on the edge-connectivity of the n-dimensional hypercube graph. These are built into sage as graphs. CubeGraph(n). Include the code that you used.

