
MATH 273 Graph Theory Rombach Week 4

Block decomposition

We have talked about connected components of graphs. If a graph is not connected, then
it has multiple such components. Intuitively, it is easy to understand what those are. Here
is a more formal definition: For G(V,E) a graph, a connected component of G is a maximal
connected subgraph. In other words, if H is a connected component of G, then H is a
connected subgraph if G and there is no other connected subgraph H ′ such that H < H ′ (H
is not a proper subgraph of any connected subgraph H ′). From this definition, we can replace
the word connected with 2-connected. Such subgraphs are blocks. However, we would like
to be able to fully decompose a graph G into its blocks, just like we did with the connected
components. A decomposition of a graph G is a set of subgraphs H1, . . . ,Hk of G and whose
union is G, and such that E(H1), . . . , E(Hk) is a partition of E(G).
So, we allow a few more substructures to be called blocks. Formally, a block is a maximal
connected subgraph without a cut-vertex. Now, G is the union of its blocks, and every edge
lies in a unique block.

Exercise 1. Show that the blocks of G are indeed a graph decomposition. 2 points

Lemmas 3.1.2 and 3.1.3 show us that block decompositions are a natural way to understand
cycles and cuts in connected graphs. First, we make an observation about minimal discon-
necting edge sets (sets of edges S ⊆ E(G) such that G− S is disconnected). For two subsets
of vertices A and B, we let

[A,B] := {ab ∈ E(G) | a ∈ A, b ∈ B}.

We let G[A] denote the subgraph of G induced by A. This is the subgraph of G who vertex
set is A and who edge set is all edges of G that have both endpoints in A.

Claim 1. A minimal disconnecting edge set in a connected graph G is of the form [A,A],
where A ⊆ V (G) and A = V (G) \A. Furthermore, G[A] and G[A] are both connected.

Proof. Let S be a minimal disconnecting edge set. Then G − S has multiple connected
components. For an arbitrary component G1 of G − S, note that all edges in S that have
exactly one endpoint in G1 form an edge cut. Since S is minimal, we must have that all edges
of S have exactly one endpoint in G1. Therefore, we let A = V (G1). All that remains to show
is that G[A] is connected (i.e. that G − S has excatly two connected components). Finish
this proof in the next exercise.

Exercise 2. Finish the proof of Claim 1. 2 points

Now, we call an edge cut of a graph G a set of edges S that is of the form [A,A] for some
A ⊆ V (G), and a bond is a minimal nonempty edge cut. Note that bonds exist even for
disconnected graphs.

Lemma 2. Let G be any graph. 3.1.2, p.60

(i) The cycles of G are precisely the cycles of its blocks.

(ii) The bonds of G are precisely the bonds of its blocks.

Lemma 3. Let G be any graph. The following statements are equivalent for any e, f ∈ E(G): 3.1.3, p.61

(i) The edges e, f belong to common block of G.
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(ii) The edges e, f belong to common cycle of G.

(iii) The edges e, f belong to common bond of G.

If A is the set of cutvertices of G, and B the set of blocks, then we have a natural bipartite
graph on A ∪ B formed by edges aB if a ∈ B.

Lemma 4. The block graph of G forms a tree. 3.1.4, p.61

Exercise 3. Prove Lemma 3.1.4. 2 points

Menger’s Theorem

We have mentioned the idea of Menger’s Theorem a few times, and now we present it in
detail. Section 3.3 has two versions of Menger’s Theorem. We will discuss both versions and
some of their proofs in class.

Theorem 5. For a graph G with A,B ⊆ V (G) (not necessarily disjoint), the minimum 3.3.1, p.67
number of vertiecs separating A from B is equal to the maximum number of disjoint A − B
paths in G.

Theorem 6. A graph G is k-connected if and only if it contains k internally disjoint paths 3.3.6, p.72
between any pair of vertices. A graph G is k-edge-connected if and only if it contains k
edge-disjoint paths between any pair of vertices.

Exercise 4. Suppose that a graph G is 2-connected. Let P be a vw-path in G for some pair 2 points
of vertices v, w ∈ V (G). Must there exist another vw-path P ′ that is internally disjoint from
P?

Exercise 5. Use Menger’s Theorem to prove Hall’s Theorem. (You only need to prove the 2 points
sufficiency of Hall’s Condition, not the necessity.)
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