
MATH 273 Graph Theory Rombach Week 3

Stable Matchings

In real-world settings that involve finding matchings, the problem often goes beyond simply
maximizing the cardinality of the matching. Actors on both sides may have preferences for
regarding who they wish to be matched with. Suppose that two vertices a and b have an edge
but are not matched by a matchingM (they may both be matched to other vertices and/or be
unmatched). If both a and b prefer to be matched to each other over their current situation,
the matching M is unstable. The famous theorem below, by Gale and Shapley, shows that
with any set of preferences, there always exists a stable matching. In 2012, Lloyd Shapley
and Alvin Roth received a Nobel prize for their work in matching theory (David Gale had
passed away in 2008).
We call a family of linear orderings (≤v)vinV a set of preferences. We say that a matching M
is stable if for every edge e ∈ E \M , there is an edge f ∈M such that e and f share a vertex
v and e ≤v f .

Theorem 1. For every set of preferences, a bipartite graph G has a stable matching. 2.1.4 p.40

Exercise 1. We run Gale-Shapley on a set of preference rankings by n doctors and n hospitals. 3 points
The number of iterations before the algorithm converges depends on the preference rankings.
What is the least number of iterations the algorithm can go through to find a stable matching?
What is the most number of iterations?

Exercise 2. Suppose that we are given a set of preference rankings by n doctors and n 2 points
hospitals. However, the preference rankings for each doctor rank only a subset of the available
hospitals, the others are vetoed (the doctor would never work there). If we consider non-
veto edges, then Hall’s Condition is satisfied (so there exists an assignment of all doctors to
hospitals they have not vetoed). Does Gale-Shapley work with the restriction that doctors may
refuse to apply to some hospitals? Is it possible that there is no stable perfect matching (in
which every doctor is matched to a hospital) in such a case?

We discuss one more nice application of Hall’s Theorem (which will come back again when we
discuss cuts and flows). A k-factor in a graph G is a subgraph H ⊆ G such that V (H) = V (G)
(we call this a spanning subgraph) and H is k-regular. A perfect matching, one that covers
all the vertices of a graph G, there gives us a 1-factor. Note that they are not technically the
same, as a matching is a set of edges, while a 1-factor is a subgraph.

Theorem 2. Every regular graph of positive even degree has a 2-factor. 2.1.5 p.41

Tutte’s Theorem in Section 2.2 gives us a generalization of Hall’s Theorem to perfect matchings
in general, not necessarily bipartite graphs. This proof is a bit bigger, and we may revisit it
later in this course. To gain some intuition for Tutte’s Theorem, try to prove the following
result for perfect matchings in trees. (Of course, trees are bipartite, but do not use Hall’s
Theorem.)

Exercise 3. Show that a tree T has a perfect matching if and only if T is such that for every 2 points
v ∈ V (T ), the graph T − v has exactly one component with an odd number of vertices.

k-connectedness

We say that a graph G is k-connected (or, k-vertex-connected) if G ∼ Kn or if G is connected
and remains connected if the deletion of any set of at most k− 1 vertices leaves G connected.
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In other words, disconnecting G requires the removal of at least k vertices. Note that this
generalizes the definition of connectedness that you are already familiar with, which is really
1-vertex-connectedness. We will start with investigating the structure of 2-connected graphs.
Let H be a subgraph of a graph G. We call a path P in G an H-path if the endpoints of P lie
in H, but all other vertices of P are outside of H. We will also call this an ear on H. Now,
we let an ear decomposition be a series of subgraphs of G: C = H0, H1, . . . ,Hk = G, such
that C is a cycle in G, and each Hi is obtained from Hi−1 by attaching an ear.

Proposition 3. Every 2-connected graph has an ear decomposition. 3.1.1 p.59

We can find a similar result for edge-connectedness. We say that a graphG is k-edge-connected
if G is connected and remains connected if the deletion of any set of at most k−1 edges leaves
G connected.
We call a closed ear on H a cycle that has exactly one vertex in common with H.

Proposition 4. Every 2-edge-connected graph has an ear decomposition that uses open and/or
closed ears.

Exercise 4. Prove Proposition 4. 2 points

We start a few more exercises to familiarize ourselves with vertex- and edge-connectivity.
We say that G has vertex-connectivity κ(G) if G is κ-connected but not κ + 1-connected.
Similarly, we label the edge-connectivity as λ(G).

Exercise 5. Show that κ(G) ≤ λ(G) for every graph G. 3 points

Exercise 6. Show that λ(G) ≤ δ(G) for every graph G. 1 points

Exercise 7. Suppose that G has all vertices of even degree. What do we know about the parity 2 points
of κ(G)? What do we know about the parity of λ(G)?
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