
MATH 273 Graph Theory Rombach Week 2

This week we will begin with talking a bit about bipartite graphs from Notes 1, which will
then lead us into Hall’s Theorem. I repeat the two exercises from Notes 1 that pertain to
bipartite graphs, and you may do them for either HW1 or HW2.

Exercise 1. Let V = {0, 1}d. In other words, V is the set of all binary strings of length d. 1 point
The d-dimensional hypercube Qd is the graph on V such that two vertices in V share an edge
if and only if the strings differ in exactly one bit. Show that the hypercube Qd is a bipartite
graph, for d = 1, 2, . . .

Exercise 2. Show that if a bipartite graph G is k-regular, meaning that d(v) = k ∀v ∈ V (G), 1 point
then the partition classes have the same size.

Hall’s Theorem

Suppose that we have a set of n students and a set of at least n sandwiches, each with different
ingredients. Each student lists the sandwiches that they would be happy to eat (based on
preference, dietary restrictions, etc..). Is is possible to distribute the sandwiches so that
everyone is happy? Suppose that a subset X of the students is interested only in a subset
Y of the sandwiches such that |Y | < |X|. For example, perhaps there are two students who
have only listed the same single sandwich. This is clearly a problem that prevents everyone
being happy. As it turns out, this is the only problem we need to worry about.

Theorem 1 (Hall’s Theorem.). Let G be a bipartite graph with partite sets A and B. We 2.1.2, p.38
have that |N(S)| ≥ |S| for every subset S ⊆ A if and only if G contains a matching of A to
B.

In the above, the notation N(S) indicates the neighborhood of the set S, meaning the set of
all vertices in V (G) that have at least one neighbor in S. In class, we will go over the second
proof in Diestel for Hall’s Theorem first. Then, we will talk about augmenting paths, both
for the first proof of Hall’s theorem and for König’s theorem.

Exercise 3. Show that if a bipartite graph G is k-regular, then it satisfies Hall’s condition. 1 point

Solution.

Exercise 4. Let M be a matching in a bipartite graph G. Show that if M is sub-optimal 2 points
(contains fewer edges than some other matching in G), then G contains an augmenting path
with respect to M .

Exercise 5. Does the above result generalize to non-bipartite graphs? 2 points

Exercise 6. Let G be a bipartite graph with bipartition V (G) = V1 ∪ V2. Suppose that G has 2 points
a matching M1 that covers X1 ⊆ V1 and a matching M2 that covers X2 ⊆ V2. Show that G
has a matching that covers X1 ∪X2.

Solution. Consider the graph on V (G) with edge set M1∪M2. This is a subgraph with max
degree 2, and is therefore a union of paths and cycles. We will pick a subset M ⊆ M1 ∪M2

that forms a matching and covers X1 ∪X2.

• Any cycle formed by M1 ∪M2 must be an even cycle, since the graph is bipartite and
also since M1 and M2 must alternate on the cycle. From each cycle, add the edges in
M1 (or M2) to M . These are sets of disjoint edges that cover all the vertices of the
cycles.
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• Any odd path formed byM1∪M2 is either anM1- or anM2-augmenting path, in which
case we pick the edges of the path that are in M2 or M1, respectively, and add them to
M . These are sets of disjoint edges that cover all the vertices of the odd path.

• Any even path formed by M1 ∪M2, either has both of its endpoints in V1 or both in
V2. If both endpoints are in V1, then pick the edges of M1 and add them to M . These
edges cover all of the vertices on the path except for one of the endpoints. However,
this endpoint was never covered by M1 and is therefore not in X1. Similarly, if both
endpoint of the path are in V2, pick the edges on the path that are in M2 and add them
to M .

The resulting set of edgesM is disjoint, and covers all the vertices that are covered byM1∪M2,
except for those that were not in X1 or X2. In other words, M covers X1 ∪X2.

Exercise 7. LetM be a matching in a simple graph G. Show that G has a maximum matching 2 points
that covers all of the vertices covered by M . Hint: over all the maximum matchings in G,
consider one with the highest number of edges in common with M .

Solution. Let M ′ be a maximum matching with the highest number of edges in common
with M . Consider the graph {V (G),M ∪M ′}. As we have seen, this graph has maximum
degree 2, and is therefore a disjoint union of cycles and paths. Suppose that there is a vertex
v that is covered by M and not covered by M ′. Then, v is an endpoint of a path P in the
graph {V (G),M ∪M ′} (since it has degree 1). The path P must have an even number of
edges, or else it is anM ′-augmenting path, which contradictsM ′ being a maximum matching.
However, if P is even, then we can remove the M ′-edges of P from M ′ and replace them with
the M -edges from P , to obtain a new matching that is also maximum and has more edges in
common with M than M ′. Therefore, such a vertex v cannot exist.
König’s Theorem is an important example of a type of min/max result that we will see a
couple of times in this course. Minimizing one type of structure is equivalent to maximizing
another. This result is closely related to Hall’s Theorem, and Menger’s Theorem and the
Min-cut Max-flow Theorem.

Theorem 2 (König’s Theorem.). If G is a bipartite graph, then the maximum cardinality of 2.1.1, p.37
a matching is equal to the minimum cardinality of a vertex cover of its edges.

Exercise 8. The proof of König’s Theorem in the book is quite dense. Write your own version 3 points
of the proof with a bit more explanation of some of the details.

Exercise 9. Over all connected graphs on n vertices, what is the lowest value that the size of 2 points
a minimum vertex cover can take (in terms of n)? What is the highest?

For both cases, give an example of a graph with a lowest/highest value, and argue why there
are no graphs with lower/higher values.

Solution. When n = 0 or n = 1, G has no edges, and the cardinality of a minimum vertex
cover, denoted β(G), is trivially 0. For n = 2, 3, . . ., G must have at least one edge, and
therefore β(G) ≥ 1. There exist connected graphs such that a single vertex is incident to all
edges (stars), which achieve this. (They are the only graphs that do.)
If we have a graph G with some β(G), then adding an edge to G can never decrease β (either
the edge is already covered by a minimum cover, or it increases the number of vertices needed
to cover all edges). Therefore, the complete graphs Kn must maximize β(G). In Kn, and in
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any vertex cover Q, there can be no two vertices v, w that are not in Q, since the edge {v, w}
would then not be covered. It is possible for only one vertex v to not be in Q, since no edge
can have both of its endpoints outside of Q. Therefore, β(Kn) = n − 1 for n = 1, 2, . . . and
β(G) ≤ n− 1 for any graph G.
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