
MATH 273 Graph Theory Rombach Week 1

Introduction to graphs

Degrees

Read Sections 1,2,3,5,6 from Chapter 1. These sections contain a lot of definitions that we
will not imemediately use, but you will at least remember where to find them when they come
up later. A graph is a pair G(V,E), where V is a set of vertices (nodes) and E ⊆

(
V
2

)
a set of

edges (links). In this course, we will almost always consider graphs to be simple, meaning that
they have no self-loops or multiple edges, and that edges are undirected. Let d(v) indicate
the degree of a vertex v ∈ V (G), i.e. the number of edges that are indicent to it (contain v),
or the number of vertices adjacent to v (that share an edge with v). As a warm-up exercise,
we prove the Handshake Lemma.

Lemma 1 (Handshake Lemma.). For any graph G, we have p.5

2|E| =
∑
v∈V

d(v).

It follows immediately that the number of odd-degree vertices in a graph is always even.

Exercise 1. Is it possible to have a graph G (on at least 2 vertices) such that d(v) 6= d(u) for 1 point
all v 6= u ∈ V (G)?

Solution. When we consider simple graphs, the set of possible vertex degrees is {0, 1, 2, . . . , n−
1}. (Why?) This means that if we have n vertices, they must use exactly all of those degrees
in order to avoid repetition. However, if there is a vertex of degree 0, that means it has an
edge to no other vertices. A vertex of degree n − 1 has an edge to all other vertices. This
is a contradiction, since these two vertices cannot share an edge and a non-edge at the same
time. Therefore, there is no such graph.
We denote the average degree of G as d(G), the minimum as δ(G) and the maximum as ∆(G).
A subgraph of G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). Note that we
cannot take any subset of V (G) and E(G), as this is not necessarily a graph. Of course a
graph can have a large average degree and small minimum degree. However, if a graph has
high average degree it must at least have a subgraph with a high minimum degree. We show
the following Proposition.

Proposition 2. Every graph G with at least one edge has a subgraph H with δ(H) ≥ d(G)/2. 1.2.2, p.6

Paths and cycles

A path is a graph of the form P (V,E) with V = {v0, . . . , vk} and E = {v0v1, . . . , vk−1vk}. A
cycle is a graph of the form C(V,E) with V = {v0, . . . , vk} and E = {v0v1, . . . , vk−1vk, v1vk}.
We say that a graph is connected if there exists a path in the graph between any pair of
vertices. In class, we will prove the following Proposition.

Proposition 3. Every graph G contains a path of length at least δ(G) and a cycle of length 1.3.1, p.8
at least δ(G) + 1.

A walk in a graph is a generalization of a path: it may repeat vertices and edges. A closed
walk in a graph is a generalization of a cycle: it may repeat vertices and edges.
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Exercise 2. Show that if a simple graph G contains an odd closed walk, it contains an odd 2 points
cycle.

Solution. We consider walks of length ≥ 3, since a walk of length 1 cannot be closed in a
simple graph. It is not so hard to verify that a closed walk of length 3 must be a cycle. We
proceed by induction. Suppose that every odd closed walk of length < k contains an odd cycle,
for an odd number k > 3, and suppose we have an odd walk of length k: v0, v1, . . . , vk = v0.
If there are no repeated vertices other than v0 = vk, then this odd walk is an odd cycle
and we are done. Otherwise, suppose that vi = vj for 0 ≤ i < j < k. Then the sequence
vi, vi+1, . . . , vj forms a closed walk, and the sequence vj , vj+1 (mod k), . . . , vi forms a closed
walk as well. The lengths of these two closed walks add up to k (and both of them are < k)
and therefore one of them is an odd walk of length < k which, by the inductive hypothesis,
contains an odd cycle.
A trail in a graph is a generalization of a path: it may repeat vertices, but not edges. A tour
in a graph is a generalization of a cycle: it may repeat vertices, but not edges. An Euler tour
in a graph is a tour that visits every edge. One of the earliest and most famous theorems in
graph theory is due to Euler. It is inspired by the Seven Bridges of Königsberg problem.

Proposition 4. A connected graph has an Euler tour if and only if every vertex has even 1.8.1, p.22
degree.

Trees

A tree is an acyclic connected graph. The following Theorem summarizes a set of equivalent
definitions of trees, which are each useful in different contexts.

Theorem 5. The following are equivalent for a graph T : 1.5.1, p.14

(i) T is a tree;

(ii) any two vertices are linked by a unique path in T ;

(iii) T is minimally connected (T − e is disconnected for every e ∈ E(T ));

(iv) T is maximally acyclic (T + e has a cycle for every e ∈ E(T )).

Exercise 3. Prove Theorem 5. 3 points

Solution. We will not prove the entire Theorem here, but we will focus on what is likely the
hardest part of the proof.

Claim 6. If a graph G with two vertices v, w ∈ V (G) contains two distinct vw-paths P1 and
P2, then G contains a cycle.

Proof. Label the two paths as P1 : v = x0, x1, . . . , xk = w and P2 : v = y0, y1, . . . , yl = w.
Let t be the smallest i such that xi 6= yi (the first time the paths diverge). Such an i must
exist since the paths diverge at some point, and have the same endpoints (so one cannot be
a subpath of the other). Then, let s be the smallest number that is greater than t such that
xs is on both paths P1 and P2. Then, xs = ys′ for some t < s′ ≤ l. Then, consider the two
subpaths: P ′1 : xt−1, . . . , xs and P ′2 : yt−1, . . . , ys′ . By construction, these two paths have the
same endpoints, but do not share any inner vertices. Therefore, together they must form a
cycle.
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Exercise 4. Prove that every tree has at least ∆(T ) vertices of degree 1 (leaves), where ∆ 1 points
indicates the maximum degree of T .

Solution. We proceed by induction on |V (T )|. It is easy to check that this claim holds for
|V (T )| ∈ {0, 1}. Let T be a tree and v ∈ V (T ) a vertex of maximum degree d(v) = ∆(T ). If
we delete v from T , we claim that this leaves ∆(T ) connected components in T−v. Every pair
of neigbors w1, w2 of v has a unique w1w2-path through v, and therefore must lie on different
components in T − v. Furthermore, every connected component of T − v must contain a
neighbor wi of v. This holds because every vertex x in V (T ) \ v has a xv-path in T on which
the penultimate vertex is a neighbor of v. Therefore, every vertex x ∈ V (T ) \ v has a path
to some neighbor of v that does not contain v itself. For every component Ci of T − v with
neighbor wi, we have three cases. Suppose wi is an isolated vertex„ Then it was a leaf in T .
Suppose that Ci ∼ K2, then it has 2 leaves. Otherwise, Ci satisfies the inductive hypothesis
and has at least 2 leaves. One of those 2 leaves may be wi, but the other one must then be a
leaf in the original tree T . Therefore, we find one leaf for each Ci.

Note the following Corollary.

Corollary 7. Every tree on at least two vertices has at least two leaves.

Exercise 5. Show that a tree without a vertex of degree 2 has more leaves than inner vertices. 1 points
Can you find a very short proof of this?

Bipartite graphs

A bipartite graph is a graph G(V,E) if there exists a bipartition V = V1∪V2 (with V1∩V2 = ∅)
such that every edge has one endpoint in V1 and one endpoint in V2. We discuss the following
equivalent definition in class.

Proposition 8. A graph is bipartite if and only if it contains no odd cycles. 1.6.1, p.18

Exercise 6. Let V = {0, 1}d. In other words, V is the set of all binary strings of length d. 1 point
The d-dimensional hypercube Qd is the graph on V such that two vertices in V share an edge
if and only if the strings differ in exactly one bit. Show that the hypercube Qd is a bipartite
graph, for d = 1, 2, . . .

Solution. Note that if two binary strings differ in exactly one bit, then the parity of their
sums must differ. Therefore, if we partition the strings by sum parity, we obtain a bipartition
in the hypercube graph.

Exercise 7. Show that if a bipartite graph G is k-regular, meaning that d(v) = k ∀v ∈ V (G), 1 point
then the partition classes have the same size.

Solution. Let V = A ∪ B be the bipartition of V (G). Note that all edges have exactly one
endpoint in A. Therefore |E| =

∑
a∈A d(a) = k · |A|. However, this is also true for B, which

gives us |E| =
∑

b∈B d(a) = k · |B|, and therefore we must have |A| = |B|.
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