Exercise 1. Watch your classmates' presentations (3) and write down 2 questions for each, related to graph theoretical tools.

Chromatic polynomial

Here, we will follow some of the notes by Andrew Goodall:
https://iuuk.mff.cuni.cz/~andrew/VKKI.pdf
The notes here are a bit more condensed.
Recall that for the join $G \oplus H$ of two graphs G and H, we have

$$
P_{G \oplus H}(z)=P_{G}(z) \circ P_{H}(z),
$$

where $z^{\underline{i}} \circ z^{\underline{j}}=z^{\underline{i}+\underline{j}}$ extended linearly to polynomials.
Exercise 2. Show that for the disjoint union of two graphs $G+H$, we have

$$
P_{G+H}(z)=P_{G}(z) \cdot P_{H}(z) .
$$

In class and in the notes, we showed that the chromatic polynomial can be defined recursively in terms of edge deletions and contractions. For a multigraph G with at least one edge $e \in E(G)$, we have

$$
P_{G}(z)=P_{G \backslash e}-P_{G / e} .
$$

As a base case, we let $P_{E_{n}}=z^{n}$, where E_{n} is the empty graph on n vertices. Note that this description of the chromatic polynomial also proves that the function is indeed a polynomial of order n.

Exercise 3. Use the recursive formula to show that, for any tree T on n vertices,

$$
P_{T}(z)=z(z-1)^{n-1} .
$$

Exercise 4. Use the recursive formula to show that, for any cycle C_{n} on n vertices,

$$
P_{C_{n}}(z)=(k-1)^{n}+(-1)^{n}(k-1) .
$$

