Miscellaneous

On Tuesday, we talked a bit about graphs and matroids. This is not a formal part of this course, but I recommend this text as a friendly introduction if you'd like to see one:
http://reu.dimacs.rutgers.edu/~ecatania/Matroids.pdf
A few exercises for this week:
Exercise 1. In class, we defined the dual graph G^{\prime} of a planar graph G : the dual graph has a vertex for each face of G, and two vertices have an edge if the respective faces share an edge.

Let G be a planar graph and T a spanning tree of G. Show that the dual edges of the complement of T form a spanning tree of the dual graph G^{\prime}.

Exercise 2. Let G be a bipartite graph with $\Delta(G)=r$. Show that the edge set of G can be partitioned into r matchings.

Exercise 3. Let $\alpha^{\prime}(G)$ be the size of a maximum matching, and $\beta^{\prime}(G)$ the size of a minimum edge cover (a set of edges such that each vertex is incident to at least one edge in the set). Let G be an n-vertex graph without isolated vertices. Show that

$$
\alpha^{\prime}(G)+\beta(G)=n .
$$

Introduction to the chromatic polynomial

Here, we will follow some of the notes by Andrew Goodall:
https://iuuk.mff.cuni.cz/~andrew/VKKI.pdf
The notes here are a bit more condensed.
Let G be a graph. We allow loops and multi-edges because we will be working recursively with deletions and contractions. We would like to find a polynomial $P_{G}(z)$ of order $n=|G|$, such that for $k \in \mathbb{N}, P_{G}(k)$ is equal to the number of proper k-colorings of G. It is not obvious that such a polynomial exists, but we will show that it does by construction.
For a real number z and natural number i, we define the falling factorial by

$$
z^{\underline{i}}=(z) \cdot(z-1) \cdot \ldots \cdot(z-i+1) .
$$

For $1 \leq i \leq n$, let $a_{i}(G)$ be the number of partitions of $V(G)$ into i classes, such that the classes are independent sets. (Note that classes must be nonempty.) Convince yourself that if $k \in \mathbb{N} k \geq i$, then there are $k \underline{i}$ proper k-colorings of G that use i colors. Also note that if $k<i$, then $k-\underline{i}=0$. We let

$$
P_{G}(z)=\sum_{i=1}^{n} a_{i}(G) z^{\underline{i}} .
$$

Check that $P_{G}(z)$ is indeed a polynomial in z of order n such that for $k \in \mathbb{N}, P_{G}(k)$ is equal to the number of proper k-colorings of G.

Exercise 4. Let

$$
P_{G}(z)=\sum_{i=1}^{n} a_{i}(G) z^{i}=\sum_{i=1}^{n} c_{i} z^{i} .
$$

Show that $c_{n}=1$ and $c_{n-1}=-m$, where m is the number of edges of G.

Exercise 5. Find $P_{G}(z)$ when $G \sim P_{n}$, the path graph on n vertices.
Exercise 6. Find $P_{G}(z)$ when $G \sim C_{n}$, the cycle graph on n vertices.
Exercise 7. Find $P_{G}(z)$ when $G \sim W_{n}$, the wheel graph on n vertices.

2 points
2 points
2 points

