Miscellaneous

On Tuesday, we talked a bit about graphs and matroids. This is not a formal part of this course, but I recommend this text as a friendly introduction if you'd like to see one: http://reu.dimacs.rutgers.edu/~ecatania/Matroids.pdf A few exercises for this week:

Exercise 1. In class, we defined the dual graph G' of a planar graph G: the dual graph has a vertex for each face of G, and two vertices have an edge if the respective faces share an edge. 3 points

Let G be a planar graph and T a spanning tree of G. Show that the dual edges of the complement of T form a spanning tree of the dual graph G'.

Exercise 2. Let G be a bipartite graph with $\Delta(G) = r$. Show that the edge set of G can be partitioned into r matchings. **3** points

Exercise 3. Let $\alpha'(G)$ be the size of a maximum matching, and $\beta'(G)$ the size of a minimum 3 points edge cover (a set of edges such that each vertex is incident to at least one edge in the set). Let G be an n-vertex graph without isolated vertices. Show that

$$\alpha'(G) + \beta(G) = n.$$

Introduction to the chromatic polynomial

Here, we will follow some of the notes by Andrew Goodall:

https://iuuk.mff.cuni.cz/~andrew/VKKI.pdf

The notes here are a bit more condensed.

Let G be a graph. We allow loops and multi-edges because we will be working recursively with deletions and contractions. We would like to find a polynomial $P_G(z)$ of order n = |G|, such that for $k \in \mathbb{N}$, $P_G(k)$ is equal to the number of proper k-colorings of G. It is not obvious that such a polynomial exists, but we will show that it does by construction.

For a real number z and natural number i, we define the *falling factorial* by

$$z^{\underline{i}} = (z) \cdot (z-1) \cdot \ldots \cdot (z-i+1).$$

For $1 \leq i \leq n$, let $a_i(G)$ be the number of partitions of V(G) into *i* classes, such that the classes are independent sets. (Note that classes must be nonempty.) Convince yourself that if $k \in \mathbb{N}$ $k \geq i$, then there are $k^{\underline{i}}$ proper *k*-colorings of *G* that use *i* colors. Also note that if k < i, then $k^{\underline{i}} = 0$. We let

$$P_G(z) = \sum_{i=1}^n a_i(G) z^{\underline{i}}.$$

Check that $P_G(z)$ is indeed a polynomial in z of order n such that for $k \in \mathbb{N}$, $P_G(k)$ is equal to the number of proper k-colorings of G.

Exercise 4. Let

$$P_G(z) = \sum_{i=1}^n a_i(G) z^i = \sum_{i=1}^n c_i z^i.$$

Show that $c_n = 1$ and $c_{n-1} = -m$, where m is the number of edges of G.

1

2 points

Exercise 5.	Find $P_G(z)$ when $G \sim P_n$, the path graph on n vertices.	2 points
Exercise 6.	Find $P_G(z)$ when $G \sim C_n$, the cycle graph on n vertices.	2 points
Exercise 7.	Find $P_G(z)$ when $G \sim W_n$, the wheel graph on n vertices.	2 points